Spaces:
Running
on
Zero
Running
on
Zero
sergiopaniego
commited on
Commit
·
b42e4a2
1
Parent(s):
1d3ac1a
Updated Space
Browse files- app.py +107 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
import torch
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
from transformers import pipeline
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import io
|
10 |
+
|
11 |
+
model_pipeline = pipeline("image-segmentation", model="sergiopaniego/segformer-b0-segments-sidewalk-finetuned")
|
12 |
+
|
13 |
+
id2label = {0: 'unlabeled', 1: 'flat-road', 2: 'flat-sidewalk', 3: 'flat-crosswalk', 4: 'flat-cyclinglane', 5: 'flat-parkingdriveway', 6: 'flat-railtrack', 7: 'flat-curb', 8: 'human-person', 9: 'human-rider', 10: 'vehicle-car', 11: 'vehicle-truck', 12: 'vehicle-bus', 13: 'vehicle-tramtrain', 14: 'vehicle-motorcycle', 15: 'vehicle-bicycle', 16: 'vehicle-caravan', 17: 'vehicle-cartrailer', 18: 'construction-building', 19: 'construction-door', 20: 'construction-wall', 21: 'construction-fenceguardrail', 22: 'construction-bridge', 23: 'construction-tunnel', 24: 'construction-stairs', 25: 'object-pole', 26: 'object-trafficsign', 27: 'object-trafficlight', 28: 'nature-vegetation', 29: 'nature-terrain', 30: 'sky', 31: 'void-ground', 32: 'void-dynamic', 33: 'void-static', 34: 'void-unclear'}
|
14 |
+
sidewalk_palette = [
|
15 |
+
[0, 0, 0], # unlabeled
|
16 |
+
[216, 82, 24], # flat-road
|
17 |
+
[255, 255, 0], # flat-sidewalk
|
18 |
+
[125, 46, 141], # flat-crosswalk
|
19 |
+
[118, 171, 47], # flat-cyclinglane
|
20 |
+
[161, 19, 46], # flat-parkingdriveway
|
21 |
+
[255, 0, 0], # flat-railtrack
|
22 |
+
[0, 128, 128], # flat-curb
|
23 |
+
[190, 190, 0], # human-person
|
24 |
+
[0, 255, 0], # human-rider
|
25 |
+
[0, 0, 255], # vehicle-car
|
26 |
+
[170, 0, 255], # vehicle-truck
|
27 |
+
[84, 84, 0], # vehicle-bus
|
28 |
+
[84, 170, 0], # vehicle-tramtrain
|
29 |
+
[84, 255, 0], # vehicle-motorcycle
|
30 |
+
[170, 84, 0], # vehicle-bicycle
|
31 |
+
[170, 170, 0], # vehicle-caravan
|
32 |
+
[170, 255, 0], # vehicle-cartrailer
|
33 |
+
[255, 84, 0], # construction-building
|
34 |
+
[255, 170, 0], # construction-door
|
35 |
+
[255, 255, 0], # construction-wall
|
36 |
+
[33, 138, 200], # construction-fenceguardrail
|
37 |
+
[0, 170, 127], # construction-bridge
|
38 |
+
[0, 255, 127], # construction-tunnel
|
39 |
+
[84, 0, 127], # construction-stairs
|
40 |
+
[84, 84, 127], # object-pole
|
41 |
+
[84, 170, 127], # object-trafficsign
|
42 |
+
[84, 255, 127], # object-trafficlight
|
43 |
+
[170, 0, 127], # nature-vegetation
|
44 |
+
[170, 84, 127], # nature-terrain
|
45 |
+
[170, 170, 127], # sky
|
46 |
+
[170, 255, 127], # void-ground
|
47 |
+
[255, 0, 127], # void-dynamic
|
48 |
+
[255, 84, 127], # void-static
|
49 |
+
[255, 170, 127], # void-unclear
|
50 |
+
]
|
51 |
+
|
52 |
+
def get_output_figure(pil_img, results):
|
53 |
+
plt.figure(figsize=(16, 10))
|
54 |
+
plt.imshow(pil_img)
|
55 |
+
image_array = np.array(pil_img)
|
56 |
+
|
57 |
+
segmentation_map = np.zeros_like(image_array)
|
58 |
+
|
59 |
+
for result in results:
|
60 |
+
mask = np.array(result['mask'])
|
61 |
+
label = result['label']
|
62 |
+
|
63 |
+
label_index = list(id2label.values()).index(label)
|
64 |
+
|
65 |
+
color = sidewalk_palette[label_index]
|
66 |
+
|
67 |
+
for c in range(3):
|
68 |
+
segmentation_map[:, :, c] = np.where(mask, color[c], segmentation_map[:, :, c])
|
69 |
+
|
70 |
+
plt.imshow(segmentation_map, alpha=0.5)
|
71 |
+
plt.axis('off')
|
72 |
+
|
73 |
+
return plt.gcf()
|
74 |
+
|
75 |
+
@spaces.GPU
|
76 |
+
def detect(image):
|
77 |
+
results = model_pipeline(image)
|
78 |
+
print(results)
|
79 |
+
|
80 |
+
output_figure = get_output_figure(image, results)
|
81 |
+
|
82 |
+
buf = io.BytesIO()
|
83 |
+
output_figure.savefig(buf, bbox_inches='tight')
|
84 |
+
buf.seek(0)
|
85 |
+
output_pil_img = Image.open(buf)
|
86 |
+
|
87 |
+
return output_pil_img
|
88 |
+
|
89 |
+
with gr.Blocks() as demo:
|
90 |
+
gr.Markdown("# Semantic segmentation with SegFormer fine tuned on segments/sidewalk")
|
91 |
+
gr.Markdown(
|
92 |
+
"""
|
93 |
+
This application uses a fine tuned SegFormer for sematic segmenation over an input image.
|
94 |
+
This version was trained using segments/sidewalk dataset.
|
95 |
+
You can load an image and see the predicted segmentation.
|
96 |
+
"""
|
97 |
+
)
|
98 |
+
|
99 |
+
gr.Interface(
|
100 |
+
fn=detect,
|
101 |
+
inputs=gr.Image(label="Input image", type="pil"),
|
102 |
+
outputs=[
|
103 |
+
gr.Image(label="Output prediction", type="pil")
|
104 |
+
]
|
105 |
+
)
|
106 |
+
|
107 |
+
demo.launch(show_error=True)
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|