File size: 3,950 Bytes
bce439c
 
0e14842
 
bce439c
0e14842
bce439c
0e14842
 
bce439c
 
0e14842
bce439c
 
 
0e14842
 
 
 
 
 
bce439c
 
 
 
 
 
 
 
 
 
 
 
0e14842
 
bce439c
0e14842
bce439c
 
 
 
 
 
 
 
 
 
 
0e14842
 
bce439c
0e14842
bce439c
 
 
 
 
0e14842
 
bce439c
0e14842
 
 
 
 
 
 
 
bce439c
 
0e14842
 
 
 
 
 
 
 
bce439c
0e14842
bce439c
0e14842
 
 
 
 
 
 
 
bce439c
0e14842
bce439c
0e14842
bce439c
0e14842
 
 
 
 
 
bce439c
0e14842
bce439c
0e14842
 
 
 
 
bce439c
0e14842
bce439c
0e14842
 
 
 
 
 
bce439c
0e14842
bce439c
 
 
 
 
 
 
 
 
0e14842
 
 
 
 
bce439c
0e14842
bce439c
 
 
0e14842
 
bce439c
 
 
 
 
 
 
 
 
 
 
0e14842
 
bce439c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import random

import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline

device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "alvarobartt/ghibli-characters-flux-lora"

pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)


MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


@spaces.GPU(duration=120)
def inference(
    prompt: str,
    seed: int,
    randomize_seed: bool,
    width: int,
    height: int,
    guidance_scale: float,
    num_inference_steps: int,
    lora_scale: float,
    progress: gr.Progress = gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    image = pipeline(
        prompt=prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
        lora_scale=lora_scale,
    ).images[0]

    return image, seed


examples = [
    (
        "Ghibli style futuristic stormtrooper with glossy white armor and a sleek helmet,"
        " standing heroically on a lush alien planet, vibrant flowers blooming around, soft"
        " sunlight illuminating the scene, a gentle breeze rustling the leaves"
    )
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# FLUX.1 Ghibli Studio LoRA")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0)

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=768,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=3.5,
                )

                lora_scale = gr.Slider(
                    label="LoRA scale",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.1,
                    value=1.0,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=30,
                )

        gr.Examples(examples=examples, inputs=[prompt])

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=inference,
        inputs=[
            prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

demo.queue().launch()