Sean-Case commited on
Commit
160f728
·
1 Parent(s): ba85577

Initialise app with basic functionality

Browse files
Files changed (8) hide show
  1. .gitattributes +34 -0
  2. .gitignore +3 -0
  3. Dockerfile +30 -0
  4. app.py +239 -0
  5. chatfuncs/__init__.py +0 -0
  6. chatfuncs/chatfuncs.py +112 -0
  7. readme.md +13 -1
  8. requirements.txt +4 -0
.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ *.pyc
2
+ *.ipynb
3
+ *.csv
Dockerfile ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.10
2
+
3
+ WORKDIR /src
4
+
5
+ COPY requirements.txt .
6
+
7
+ RUN pip install --no-cache-dir -r requirements.txt
8
+
9
+ # Set up a new user named "user" with user ID 1000
10
+ RUN useradd -m -u 1000 user
11
+ # Switch to the "user" user
12
+ USER user
13
+ # Set home to the user's home directory
14
+ ENV HOME=/home/user \
15
+ PATH=/home/user/.local/bin:$PATH \
16
+ PYTHONPATH=$HOME/app \
17
+ PYTHONUNBUFFERED=1 \
18
+ GRADIO_ALLOW_FLAGGING=never \
19
+ GRADIO_NUM_PORTS=1 \
20
+ GRADIO_SERVER_NAME=0.0.0.0 \
21
+ GRADIO_THEME=huggingface \
22
+ SYSTEM=spaces
23
+
24
+ # Set the working directory to the user's home directory
25
+ WORKDIR $HOME/app
26
+
27
+ # Copy the current directory contents into the container at $HOME/app setting the owner to the user
28
+ COPY --chown=user . $HOME/app
29
+
30
+ CMD ["python", "app.py"]
app.py ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from datetime import datetime
3
+ import pandas as pd
4
+ from transformers import pipeline
5
+ # # Load in packages
6
+
7
+ # +
8
+ import os
9
+
10
+ # Need to overwrite version of gradio present in Huggingface spaces as it doesn't have like buttons/avatars (Oct 2023)
11
+ #os.system("pip uninstall -y gradio")
12
+ os.system("pip install gradio==3.50.0")
13
+
14
+ from typing import TypeVar
15
+ #from langchain.embeddings import HuggingFaceEmbeddings#, HuggingFaceInstructEmbeddings
16
+ #from langchain.vectorstores import FAISS
17
+ import gradio as gr
18
+
19
+ from transformers import AutoTokenizer
20
+
21
+ # Alternative model sources
22
+ import ctransformers
23
+
24
+ PandasDataFrame = TypeVar('pd.core.frame.DataFrame')
25
+
26
+ import chatfuncs.chatfuncs as chatf
27
+
28
+ # Disable cuda devices if necessary
29
+ #os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
30
+
31
+ def create_hf_model(model_name):
32
+
33
+ tokenizer = AutoTokenizer.from_pretrained(model_name, model_max_length = chatf.context_length)
34
+
35
+ summariser = pipeline("summarization", model=model_name, tokenizer=tokenizer) # philschmid/bart-large-cnn-samsum
36
+
37
+ #from transformers import AutoModelForSeq2SeqLM, AutoModelForCausalLM
38
+
39
+ # if torch_device == "cuda":
40
+ # if "flan" in model_name:
41
+ # model = AutoModelForSeq2SeqLM.from_pretrained(model_name, device_map="auto")
42
+ # else:
43
+ # model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
44
+ # else:
45
+ # if "flan" in model_name:
46
+ # model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
47
+ # else:
48
+ # model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
49
+
50
+
51
+
52
+ return summariser, tokenizer, model_name
53
+
54
+ def load_model(model_type, gpu_layers, gpu_config=None, cpu_config=None, torch_device=None):
55
+ print("Loading model ", model_type)
56
+
57
+ # Default values inside the function
58
+ if gpu_config is None:
59
+ gpu_config = chatf.gpu_config
60
+ if cpu_config is None:
61
+ cpu_config = chatf.cpu_config
62
+ if torch_device is None:
63
+ torch_device = chatf.torch_device
64
+
65
+ if model_type == "Mistral Open Orca (larger, slow)":
66
+ hf_checkpoint = 'TheBloke/MistralLite-7B-GGUF'
67
+
68
+ if torch_device == "cuda":
69
+ gpu_config.update_gpu(gpu_layers)
70
+ else:
71
+ gpu_config.update_gpu(gpu_layers)
72
+ cpu_config.update_gpu(gpu_layers)
73
+
74
+ print("Loading with", cpu_config.gpu_layers, "model layers sent to GPU.")
75
+
76
+ print(vars(gpu_config))
77
+ print(vars(cpu_config))
78
+
79
+ #try:
80
+ #model = ctransformers.AutoModelForCausalLM.from_pretrained('Aryanne/Orca-Mini-3B-gguf', model_type='llama', model_file='q5_0-orca-mini-3b.gguf', **vars(gpu_config)) # **asdict(CtransRunConfig_cpu())
81
+ #model = ctransformers.AutoModelForCausalLM.from_pretrained('Aryanne/Wizard-Orca-3B-gguf', model_type='llama', model_file='q4_1-wizard-orca-3b.gguf', **vars(gpu_config)) # **asdict(CtransRunConfig_cpu())
82
+ #model = ctransformers.AutoModelForCausalLM.from_pretrained('TheBloke/Mistral-7B-OpenOrca-GGUF', model_type='mistral', model_file='mistral-7b-openorca.Q4_K_M.gguf', **vars(gpu_config), hf=True) # **asdict(CtransRunConfig_cpu())
83
+
84
+ #except:
85
+ #model = ctransformers.AutoModelForCausalLM.from_pretrained('Aryanne/Orca-Mini-3B-gguf', model_type='llama', model_file='q5_0-orca-mini-3b.gguf', **vars(cpu_config)) #**asdict(CtransRunConfig_gpu())
86
+ #model = ctransformers.AutoModelForCausalLM.from_pretrained('Aryanne/Wizard-Orca-3B-gguf', model_type='llama', model_file='q4_1-wizard-orca-3b.gguf', **vars(cpu_config)) # **asdict(CtransRunConfig_cpu())
87
+ #model = ctransformers.AutoModelForCausalLM.from_pretrained('TheBloke/Mistral-7B-OpenOrca-GGUF', model_type='mistral', model_file='mistral-7b-openorca.Q4_K_M.gguf', **vars(cpu_config), hf=True) # **asdict(CtransRunConfig_cpu())
88
+
89
+ #tokenizer = ctransformers.AutoTokenizer.from_pretrained(model)
90
+ #summariser = pipeline("text-generation", model=model, tokenizer=tokenizer)
91
+
92
+ model = []
93
+ tokenizer = []
94
+ summariser = []
95
+
96
+ if model_type == "flan-t5-large-stacked-samsum":
97
+ # Huggingface chat model
98
+ hf_checkpoint = 'stacked-summaries/flan-t5-large-stacked-samsum-1024'#'declare-lab/flan-alpaca-base' # # #
99
+
100
+ summariser, tokenizer, model_type = create_hf_model(model_name = hf_checkpoint)
101
+
102
+ if model_type == "flan-t5-small-stacked-samsum":
103
+ # Huggingface chat model
104
+ hf_checkpoint = 'stacked-summaries/flan-t5-small-stacked-samsum-1024' #'philschmid/flan-t5-small-stacked-samsum'#'declare-lab/flan-alpaca-base' # # #
105
+
106
+
107
+ summariser, tokenizer, model_type = create_hf_model(model_name = hf_checkpoint)
108
+
109
+ chatf.model = summariser
110
+ chatf.tokenizer = tokenizer
111
+ chatf.model_type = model_type
112
+
113
+ load_confirmation = "Finished loading model: " + model_type
114
+
115
+ print(load_confirmation)
116
+ return model_type, load_confirmation, model_type
117
+
118
+ # Both models are loaded on app initialisation so that users don't have to wait for the models to be downloaded
119
+ #model_type = "Mistral Open Orca (larger, slow)"
120
+ #load_model(model_type, chatf.gpu_layers, chatf.gpu_config, chatf.cpu_config, chatf.torch_device)
121
+
122
+ model_type = "flan-t5-large-stacked-samsum"
123
+ load_model(model_type, chatf.gpu_layers, chatf.gpu_config, chatf.cpu_config, chatf.torch_device)
124
+
125
+ model_type = "flan-t5-small-stacked-samsum"
126
+ load_model(model_type, 0, chatf.gpu_config, chatf.cpu_config, chatf.torch_device)
127
+
128
+ today = datetime.now().strftime("%d%m%Y")
129
+ today_rev = datetime.now().strftime("%Y%m%d")
130
+
131
+ def summarise_text(text, text_df, length_slider, in_colnames, model_type):
132
+
133
+ if text_df == None:
134
+ in_colnames="text"
135
+ in_colnames_list_first = in_colnames
136
+
137
+ in_text_df = pd.DataFrame({in_colnames_list_first:[text]})
138
+
139
+ else:
140
+ in_text_df = pd.read_csv(text_df.name, delimiter = ",", low_memory=False, encoding='cp1252')
141
+ in_colnames_list_first = in_colnames.tolist()[0][0]
142
+
143
+ if model_type != "Mistral Open Orca (larger, slow)":
144
+ summarised_text = chatf.model(list(in_text_df[in_colnames_list_first]), max_length=length_slider)
145
+
146
+ if model_type == "Mistral Open Orca (larger, slow)":
147
+
148
+ length = str(length_slider)
149
+
150
+ prompt = """<|im_start|>system
151
+ You are an AI assistant that follows instruction extremely well. Help as much as you can.
152
+ <|im_start|>user
153
+ Summarise the following text in less than {length} words.
154
+ Text: {text}
155
+ Answer:<|im_end|>"""
156
+
157
+ formatted_string = prompt.format(length=length, text=text)
158
+
159
+ print(formatted_string)
160
+
161
+ #summarised_text = chatf.model(formatted_string, max_new_tokens=length_slider)
162
+
163
+ summarised_text = "Mistral Open Orca summaries currently not working. Sorry!"
164
+
165
+ if text_df == None:
166
+ if model_type != "Mistral Open Orca (larger, slow)":
167
+ summarised_text_out = summarised_text[0].values()
168
+
169
+ if model_type == "Mistral Open Orca (larger, slow)":
170
+ summarised_text_out = summarised_text
171
+
172
+ else:
173
+ summarised_text_out = [d['summary_text'] for d in summarised_text] #summarised_text[0].values()
174
+
175
+ output_name = "summarise_output_" + today_rev + ".csv"
176
+ output_df = pd.DataFrame({"Original text":in_text_df[in_colnames_list_first],
177
+ "Summarised text":summarised_text_out})
178
+
179
+ summarised_text_out_str = str(output_df["Summarised text"][0])#.str.replace("dict_values([","").str.replace("])",""))
180
+
181
+ output_df.to_csv(output_name, index = None)
182
+
183
+ return summarised_text_out_str, output_name
184
+
185
+ # ## Gradio app - summarise
186
+ block = gr.Blocks(theme = gr.themes.Base())
187
+
188
+ with block:
189
+
190
+ model_type_state = gr.State(model_type)
191
+
192
+ gr.Markdown(
193
+ """
194
+ # Text summariser
195
+ Enter open text below to get a summary. You can copy and paste text directly, or upload a file and specify the column that you want to summarise. Note that summarisation with Mistral Open Orca is still in development and does not currently work.
196
+ """)
197
+
198
+ with gr.Tab("Summariser"):
199
+ current_model = gr.Textbox(label="Current model", value=model_type, scale = 3)
200
+
201
+ with gr.Accordion("Paste open text", open = False):
202
+ in_text = gr.Textbox(label="Copy and paste your open text here", lines = 5)
203
+
204
+ with gr.Accordion("Summarise open text from a file", open = False):
205
+ in_text_df = gr.File(label="Input text from file")
206
+ in_colnames = gr.Dataframe(label="Write the column name for the open text to summarise",
207
+ type="numpy", row_count=(1,"fixed"), col_count = (1,"fixed"),
208
+ headers=["Open text column name"])#, "Address column name 2", "Address column name 3", "Address column name 4"])
209
+
210
+ with gr.Row():
211
+ summarise_btn = gr.Button("Summarise")
212
+ length_slider = gr.Slider(minimum = 30, maximum = 200, value = 100, step = 10, label = "Maximum length of summary")
213
+
214
+ with gr.Row():
215
+ output_single_text = gr.Textbox(label="Output example (first example in dataset)")
216
+ output_file = gr.File(label="Output file")
217
+
218
+ with gr.Tab("Advanced features"):
219
+ #out_passages = gr.Slider(minimum=1, value = 2, maximum=10, step=1, label="Choose number of passages to retrieve from the document. Numbers greater than 2 may lead to increased hallucinations or input text being truncated.")
220
+ #temp_slide = gr.Slider(minimum=0.1, value = 0.1, maximum=1, step=0.1, label="Choose temperature setting for response generation.")
221
+ with gr.Row():
222
+ model_choice = gr.Radio(label="Choose a summariser model", value="flan-t5-small-stacked-samsum", choices = ["flan-t5-small-stacked-samsum", "flan-t5-large-stacked-samsum", "Mistral Open Orca (larger, slow)"])
223
+ change_model_button = gr.Button(value="Load model", scale=0)
224
+ with gr.Accordion("Choose number of model layers to send to GPU (WARNING: please don't modify unless you are sure you have a GPU).", open = False):
225
+ gpu_layer_choice = gr.Slider(label="Choose number of model layers to send to GPU.", value=0, minimum=0, maximum=5, step = 1, visible=True)
226
+
227
+ load_text = gr.Text(label="Load status")
228
+
229
+
230
+ change_model_button.click(fn=load_model, inputs=[model_choice, gpu_layer_choice], outputs = [model_type_state, load_text, current_model])
231
+
232
+ summarise_btn.click(fn=summarise_text, inputs=[in_text, in_text_df, length_slider, in_colnames, model_type_state],
233
+ outputs=[output_single_text, output_file], api_name="summarise_single_text")
234
+
235
+ block.queue(concurrency_count=1).launch()
236
+ # -
237
+
238
+
239
+
chatfuncs/__init__.py ADDED
File without changes
chatfuncs/chatfuncs.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from typing import TypeVar
3
+
4
+ # Model packages
5
+ import torch.cuda
6
+ from transformers import pipeline
7
+
8
+ torch.cuda.empty_cache()
9
+
10
+ PandasDataFrame = TypeVar('pd.core.frame.DataFrame')
11
+
12
+ model_type = None # global variable setup
13
+
14
+ full_text = "" # Define dummy source text (full text) just to enable highlight function to load
15
+
16
+ model = [] # Define empty list for model functions to run
17
+ tokenizer = [] # Define empty list for model functions to run
18
+
19
+
20
+ # Currently set gpu_layers to 0 even with cuda due to persistent bugs in implementation with cuda
21
+ if torch.cuda.is_available():
22
+ torch_device = "cuda"
23
+ gpu_layers = 0
24
+ else:
25
+ torch_device = "cpu"
26
+ gpu_layers = 0
27
+
28
+ print("Running on device:", torch_device)
29
+ threads = 8 #torch.get_num_threads()
30
+ print("CPU threads:", threads)
31
+
32
+ # flan-t5-large-stacked-xsum Model parameters
33
+ temperature: float = 0.1
34
+ top_k: int = 3
35
+ top_p: float = 1
36
+ repetition_penalty: float = 1.3
37
+ flan_alpaca_repetition_penalty: float = 1.3
38
+ last_n_tokens: int = 64
39
+ max_new_tokens: int = 256
40
+ seed: int = 42
41
+ reset: bool = False
42
+ stream: bool = True
43
+ threads: int = threads
44
+ batch_size:int = 256
45
+ context_length:int = 4096
46
+ sample = True
47
+
48
+
49
+ class CtransInitConfig_gpu:
50
+ def __init__(self, temperature=temperature,
51
+ top_k=top_k,
52
+ top_p=top_p,
53
+ repetition_penalty=repetition_penalty,
54
+ last_n_tokens=last_n_tokens,
55
+ max_new_tokens=max_new_tokens,
56
+ seed=seed,
57
+ reset=reset,
58
+ stream=stream,
59
+ threads=threads,
60
+ batch_size=batch_size,
61
+ context_length=context_length,
62
+ gpu_layers=gpu_layers):
63
+ self.temperature = temperature
64
+ self.top_k = top_k
65
+ self.top_p = top_p
66
+ self.repetition_penalty = repetition_penalty# repetition_penalty
67
+ self.last_n_tokens = last_n_tokens
68
+ self.max_new_tokens = max_new_tokens
69
+ self.seed = seed
70
+ self.reset = reset
71
+ self.stream = stream
72
+ self.threads = threads
73
+ self.batch_size = batch_size
74
+ self.context_length = context_length
75
+ self.gpu_layers = gpu_layers
76
+ # self.stop: list[str] = field(default_factory=lambda: [stop_string])
77
+
78
+ def update_gpu(self, new_value):
79
+ self.gpu_layers = new_value
80
+
81
+ class CtransInitConfig_cpu(CtransInitConfig_gpu):
82
+ def __init__(self):
83
+ super().__init__()
84
+ self.gpu_layers = 0
85
+
86
+ gpu_config = CtransInitConfig_gpu()
87
+ cpu_config = CtransInitConfig_cpu()
88
+
89
+
90
+ class CtransGenGenerationConfig:
91
+ def __init__(self, temperature=temperature,
92
+ top_k=top_k,
93
+ top_p=top_p,
94
+ repetition_penalty=repetition_penalty,
95
+ last_n_tokens=last_n_tokens,
96
+ seed=seed,
97
+ threads=threads,
98
+ batch_size=batch_size,
99
+ reset=True
100
+ ):
101
+ self.temperature = temperature
102
+ self.top_k = top_k
103
+ self.top_p = top_p
104
+ self.repetition_penalty = repetition_penalty# repetition_penalty
105
+ self.last_n_tokens = last_n_tokens
106
+ self.seed = seed
107
+ self.threads = threads
108
+ self.batch_size = batch_size
109
+ self.reset = reset
110
+
111
+ def update_temp(self, new_value):
112
+ self.temperature = new_value
readme.md CHANGED
@@ -1 +1,13 @@
1
- test
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Open Text Summariser
3
+ emoji: 🚀
4
+ colorFrom: green
5
+ colorTo: gray
6
+ sdk: gradio
7
+ sdk_version: 3.50.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: apache-2.0
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ gradio==3.50.0
2
+ transformers
3
+ torch
4
+ ctransformers[cuda]