File size: 17,150 Bytes
ee63c25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37eb9e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee63c25
 
 
 
 
7fca79d
ee63c25
7fca79d
37eb9e5
 
 
 
 
 
 
 
 
 
 
 
ee63c25
7fca79d
ee63c25
 
7fca79d
ee63c25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fca79d
ee63c25
 
a06825a
 
 
 
 
 
 
 
 
 
 
ee63c25
 
7fca79d
 
 
 
 
 
 
 
 
 
 
 
a06825a
7fca79d
03791e3
7fca79d
 
 
 
 
 
 
 
03791e3
7fca79d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03791e3
a06825a
 
 
 
 
 
 
 
7fca79d
a06825a
7fca79d
a06825a
 
7fca79d
a06825a
 
0b998d1
7fca79d
 
 
 
 
ee63c25
7fca79d
 
 
 
 
 
 
 
 
 
37eb9e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fca79d
 
 
ee63c25
 
7fca79d
ee63c25
7fca79d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
from __future__ import annotations
import os
import random
import uuid
import gradio as gr
import spaces
import numpy as np
from diffusers import PixArtAlphaPipeline, LCMScheduler
import torch
from typing import Tuple
from datetime import datetime

# Description for the app
DESCRIPTION = """ 
# Instant Image
"""
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"

# Configuration and constants
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4192"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
PORT = int(os.getenv("DEMO_PORT", "15432"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Define color-based attributes
color_attributes = {
    "Purple": {"verbs": ["assist", "befriend", "care", "collaborate", "connect", "embrace", "empower", "encourage", "foster", "give", "help", "nourish", "nurture", "promote", "protect", "provide", "serve", "share", "shepherd", "steward", "tend", "uplift", "value", "welcome"], "adjectives": ["caring", "encouraging", "attentive", "compassionate", "empathetic", "generous", "hospitable", "nurturing", "protective", "selfless", "supportive", "welcoming"]},
    "Green": {"verbs": ["analyze", "discover", "examine", "expand", "explore", "extend", "inquire", "journey", "launch", "move", "pioneer", "pursue", "question", "reach", "search", "uncover", "venture", "wonder"], "adjectives": ["adventurous", "curious", "discerning", "examining", "experiential", "exploratory", "inquisitive", "investigative", "intrepid", "philosophical"]},
    "Maroon": {"verbs": ["accomplish", "achieve", "build", "challenge", "commit", "compete", "contend", "dedicate", "defend", "devote", "drive", "endeavor", "entrust", "endure", "fight", "grapple", "grow", "improve", "increase", "overcome", "persevere", "persist", "press on", "pursue", "resolve"], "adjectives": ["competitive", "determined", "gritty", "industrious", "persevering", "relentless", "resilient", "tenacious", "tough", "unwavering"]},
    "Orange": {"verbs": ["compose", "conceptualize", "conceive", "craft", "create", "design", "dream", "envision", "express", "fashion", "form", "imagine", "interpret", "make", "originate", "paint", "perform", "portray", "realize", "shape"], "adjectives": ["artistic", "conceptual", "creative", "eclectic", "expressive", "imaginative", "interpretive", "novel", "original", "whimsical"]},
    "Yellow": {"verbs": ["accelerate", "advance", "change", "conceive", "create", "engineer", "envision", "experiment", "dream", "ignite", "illuminate", "imagine", "innovate", "inspire", "invent", "pioneer", "progress", "shape", "spark", "solve", "transform", "unleash", "unlock"], "adjectives": ["advanced", "analytical", "brilliant", "experimental", "forward-thinking", "innovative", "intelligent", "inventive", "leading-edge", "visionary"]},
    "Red": {"verbs": ["animate", "amuse", "captivate", "cheer", "delight", "encourage", "energize", "engage", "enjoy", "enliven", "entertain", "excite", "express", "inspire", "joke", "motivate", "play", "stir", "uplift"], "adjectives": ["dynamic", "energetic", "engaging", "entertaining", "enthusiastic", "exciting", "fun", "lively", "magnetic", "playful", "humorous"]},
    "Blue": {"verbs": ["accomplish", "achieve", "affect", "assert", "cause", "command", "determine", "direct", "dominate", "drive", "empower", "establish", "guide", "impact", "impress", "influence", "inspire", "lead", "outpace", "outshine", "realize", "shape", "succeed", "transform", "win"], "adjectives": ["accomplished", "assertive", "confident", "decisive", "elite", "influential", "powerful", "prominent", "proven", "strong"]},
    "Pink": {"verbs": ["arise", "aspire", "detail", "dream", "elevate", "enchant", "enrich", "envision", "exceed", "excel", "experience", "improve", "idealize", "imagine", "inspire", "perfect", "poise", "polish", "prepare", "refine", "uplift"], "adjectives": ["aesthetic", "charming", "classic", "dignified", "idealistic", "meticulous", "poised", "polished", "refined", "sophisticated", "elegant"]},
    "Silver": {"verbs": ["activate", "campaign", "challenge", "commit", "confront", "dare", "defy", "disrupt", "drive", "excite", "face", "ignite", "incite", "influence", "inspire", "inspirit", "motivate", "move", "push", "rebel", "reimagine", "revolutionize", "rise", "spark", "stir", "fight", "free"], "adjectives": ["bold", "daring", "fearless", "independent", "non-conformist", "radical", "rebellious", "resolute", "unconventional", "valiant"]},
    "Beige": {"verbs": ["dedicate", "humble", "collaborate", "empower", "inspire", "empassion", "transform"], "adjectives": ["dedicated", "collaborative", "consistent", "empowering", "enterprising", "humble", "inspiring", "passionate", "proud", "traditional", "transformative"]},
}

# Image styles for Gradio interface
style_list = [
    {"name": "(No style)", "prompt": "{prompt}", "negative_prompt": ""},
    {"name": "Cinematic", "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", "negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured"},
    {"name": "Realistic", "prompt": "Photorealistic {prompt} . Ulta-realistic, professional, 4k, highly detailed", "negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, disfigured"},
    {"name": "Anime", "prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime,  highly detailed", "negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast"},
    {"name": "Digital Art", "prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed", "negative_prompt": "photo, photorealistic, realism, ugly"},
    {"name": "Pixel art", "prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics", "negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic"},
    {"name": "Fantasy art", "prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy", "negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white"},
    {"name": "3D Model", "prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting", "negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting"},
]

# Create dictionary of styles
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(No style)"
NUM_IMAGES_PER_PROMPT = 1

# Function to apply style and modify prompt based on selected colors
def apply_style(style_name: str, positive: str, color_selections: dict) -> Tuple[str, str]:
    p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    color_prompt = ""
    
    # Aggregate verbs and adjectives from selected colors based on their ratios
    for color, attributes in color_selections.items():
        if attributes["selected"]:
            verbs = random.sample(color_attributes[color]["verbs"], min(3, len(color_attributes[color]["verbs"])))
            adjectives = random.sample(color_attributes[color]["adjectives"], min(3, len(color_attributes[color]["adjectives"])))
            color_prompt += " ".join(verbs) + " " + " ".join(adjectives) + " "
    
    # Form the final prompt
    final_prompt = p.replace("{prompt}", positive + " " + color_prompt.strip())
    return final_prompt, n

# Check if CUDA is available and set up the pipeline
if torch.cuda.is_available():
    pipe = PixArtAlphaPipeline.from_pretrained(
        "PixArt-alpha/PixArt-LCM-XL-2-1024-MS",
        torch_dtype=torch.float16,
        use_safetensors=True,
    )
    if os.getenv('CONSISTENCY_DECODER', False):
        print("Using DALL-E 3 Consistency Decoder")
        pipe.vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16)
    if ENABLE_CPU_OFFLOAD:
        pipe.enable_model_cpu_offload()
    else:
        pipe.to(device)
        print("Loaded on Device!")
    if USE_TORCH_COMPILE:
        pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True)
        print("Model Compiled!")

# Function to save image
def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

# Function to randomize seed if needed
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

# Main function to generate images based on user inputs
@spaces.GPU(duration=30)
def generate(
    prompt: str,
    negative_prompt: str = "",
    style: str = DEFAULT_STYLE_NAME,
    use_negative_prompt: bool = False,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    inference_steps: int = 4,
    randomize_seed: bool = False,
    use_resolution_binning: bool = True,
    purple_selected: bool = False,
    purple_ratio: float = 0.0,
    green_selected: bool = False,
    green_ratio: float = 0.0,
    maroon_selected: bool = False,
    maroon_ratio: float = 0.0,
    orange_selected: bool = False,
    orange_ratio: float = 0.0,
    yellow_selected: bool = False,
    yellow_ratio: float = 0.0,
    red_selected: bool = False,
    red_ratio: float = 0.0,
    blue_selected: bool = False,
    blue_ratio: float = 0.0,
    pink_selected: bool = False,
    pink_ratio: float = 0.0,
    silver_selected: bool = False,
    silver_ratio: float = 0.0,
    beige_selected: bool = False,
    beige_ratio: float = 0.0,
):
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator().manual_seed(seed)
    
    if not use_negative_prompt:
        negative_prompt = None  # type: ignore
    
    # Process color selections and their ratios
    color_selections = {
        "Purple": {"selected": purple_selected, "ratio": purple_ratio},
        "Green": {"selected": green_selected, "ratio": green_ratio},
        "Maroon": {"selected": maroon_selected, "ratio": maroon_ratio},
        "Orange": {"selected": orange_selected, "ratio": orange_ratio},
        "Yellow": {"selected": yellow_selected, "ratio": yellow_ratio},
        "Red": {"selected": red_selected, "ratio": red_ratio},
        "Blue": {"selected": blue_selected, "ratio": blue_ratio},
        "Pink": {"selected": pink_selected, "ratio": pink_ratio},
        "Silver": {"selected": silver_selected, "ratio": silver_ratio},
        "Beige": {"selected": beige_selected, "ratio": beige_ratio},
    }
    
    # Apply style and modify prompt based on color selections
    prompt, negative_prompt = apply_style(style, prompt, color_selections)
    
    # Generate images
    try:
        images = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            width=width,
            height=height,
            guidance_scale=0,
            num_inference_steps=inference_steps,
            generator=generator,
            num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
            use_resolution_binning=use_resolution_binning,
            output_type="pil",
        ).images
    except Exception as e:
        print(f"Error during image generation: {e}")
        return [], seed
    
    image_paths = [save_image(img) for img in images]
    print(image_paths)
    return image_paths, seed

# Example prompts
examples = [
    "A Monkey with a happy face in the Sahara desert.",
    "Eiffel Tower was Made up of ICE.",
    "Color photo of a corgi made of transparent glass, standing on the riverside in Yosemite National Park.",
    "A close-up photo of a woman. She wore a blue coat with a gray dress underneath and has blue eyes.",
    "A litter of golden retriever puppies playing in the snow. Their heads pop out of the snow, covered in.",
    "an astronaut sitting in a diner, eating fries, cinematic, analog film",
]

# Set up the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Row(equal_height=False):
        with gr.Group():
            with gr.Row():
                prompt = gr.Text(
                    label="Prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt",
                    container=False,
                )
                run_button = gr.Button("Run", scale=0)
            result = gr.Gallery(label="Result", columns=NUM_IMAGES_PER_PROMPT, show_label=False)
    
    # Color selection and ratio configuration in the UI
    with gr.Accordion("Color Influences", open=False):
        with gr.Group():
            color_checkboxes = {}
            color_sliders = {}
            for color in color_attributes:
                with gr.Row():
                    color_checkboxes[color] = gr.Checkbox(label=f"{color} Selected", value=False)
                    color_sliders[color] = gr.Slider(label=f"{color} Influence Ratio", minimum=0, maximum=1, step=0.01, value=0.0)
    
    with gr.Accordion("Advanced options", open=False):
        with gr.Group():
            with gr.Row():
                use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False, visible=True)
                negative_prompt = gr.Text(
                    label="Negative prompt",
                    max_lines=1,
                    placeholder="Enter a negative prompt",
                    visible=True,
                )
            style_selection = gr.Radio(
                choices=STYLE_NAMES,
                value=DEFAULT_STYLE_NAME,
                label="Image Style",
                show_label=True,
                container=True,
                interactive=True,
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            with gr.Row(visible=True):
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
        with gr.Row():
            inference_steps = gr.Slider(
                label="Steps",
                minimum=4,
                maximum=20,
                step=1,
                value=4,
            )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=[result, seed],
        fn=generate,
        cache_examples=CACHE_EXAMPLES,
    )

    # Dynamic updates based on user interactions
    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            style_selection,
            use_negative_prompt,
            seed,
            width,
            height,
            inference_steps,
            randomize_seed,
            # Color configurations
            color_checkboxes["Purple"],
            color_sliders["Purple"],
            color_checkboxes["Green"],
            color_sliders["Green"],
            color_checkboxes["Maroon"],
            color_sliders["Maroon"],
            color_checkboxes["Orange"],
            color_sliders["Orange"],
            color_checkboxes["Yellow"],
            color_sliders["Yellow"],
            color_checkboxes["Red"],
            color_sliders["Red"],
            color_checkboxes["Blue"],
            color_sliders["Blue"],
            color_checkboxes["Pink"],
            color_sliders["Pink"],
            color_checkboxes["Silver"],
            color_sliders["Silver"],
            color_checkboxes["Beige"],
            color_sliders["Beige"],
        ],
        outputs=[result, seed],
        api_name="run",
    )

# Launch the Gradio app
if __name__ == "__main__":
    demo.queue(max_size=20).launch()
    # Uncomment the next line to launch the server with specific options
    # demo.queue(max_size=20).launch(server_name="0.0.0.0", server_port=11900, debug=True)