Spaces:
Runtime error
Runtime error
import streamlit as st | |
from evaluate import evaluator | |
import evaluate | |
import datasets | |
import sentencepiece | |
from huggingface_hub import HfApi, ModelFilter | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
from transformers import AutoTokenizer, AutoModelForMaskedLM | |
from transformers import pipeline | |
import matplotlib.pyplot as plt | |
st.title("Metric Compare") | |
st.markdown("## Choose the dataset you want to use for the comparison:") | |
api = HfApi() | |
datasets = api.list_datasets(filter="task_categories:text-classification", sort = "downloads", direction=-1, limit = 20) | |
dset = st.selectbox(datasets) | |
st.markdown("## Now select up to 5 models to compare their performance:") | |
models = api.list_models(filter="trained_dataset:imdb", sort = "downloads", direction=-1, limit = 20) | |
options = st.multiselect( | |
'Choose your models', | |
models) | |
""" | |
tokenizer1 = AutoTokenizer.from_pretrained("lvwerra/distilbert-imdb") | |
model1 = AutoModelForSequenceClassification.from_pretrained("lvwerra/distilbert-imdb") | |
tokenizer2 = AutoTokenizer.from_pretrained("sahn/distilbert-base-uncased-finetuned-imdb") | |
model2 = AutoModelForSequenceClassification.from_pretrained("sahn/distilbert-base-uncased-finetuned-imdb") | |
tokenizer3 = AutoTokenizer.from_pretrained("aychang/roberta-base-imdb") | |
model3 = AutoModelForSequenceClassification.from_pretrained("aychang/roberta-base-imdb") | |
tokenizer4 = AutoTokenizer.from_pretrained("Sreevishnu/funnel-transformer-small-imdb") | |
model4 = AutoModelForSequenceClassification.from_pretrained("Sreevishnu/funnel-transformer-small-imdb") | |
tokenizer5 = AutoTokenizer.from_pretrained("RANG012/SENATOR") | |
model5 = AutoModelForSequenceClassification.from_pretrained("RANG012/SENATOR") | |
accuracy = evaluate.load("accuracy") | |
f1 = evaluate.load('f1') | |
data = datasets.load_dataset("imdb", split="test").shuffle().select(range(1000)) | |
eval = evaluator("text-classification") | |
pipe1 = pipeline("text-classification", model=model1, tokenizer= tokenizer1, device=0) | |
res_accuracy1 = eval.compute(model_or_pipeline=pipe1, data=data, metric=accuracy, | |
label_mapping={"NEGATIVE": 0, "POSITIVE": 1},) | |
res_f11 = eval.compute(model_or_pipeline=pipe1, data=data, metric=f1, | |
label_mapping={"NEGATIVE": 0, "POSITIVE": 1},) | |
print({**res_accuracy1, **res_f11}) | |
pipe2 = pipeline("text-classification", model=model2, tokenizer= tokenizer2, device=0) | |
res_accuracy2 = eval.compute(model_or_pipeline=pipe2, data=data, metric=accuracy, | |
label_mapping={"LABEL_0": 0, "LABEL_1": 1},) | |
res_f12 = eval.compute(model_or_pipeline=pipe2, data=data, metric=f1, | |
label_mapping={"LABEL_0": 0, "LABEL_1": 1},) | |
print({**res_accuracy2, **res_f12}) | |
pipe3 = pipeline("text-classification", model=model3, tokenizer= tokenizer3, device=0) | |
res_accuracy3 = eval.compute(model_or_pipeline=pipe3, data=data, metric=accuracy, | |
label_mapping={"neg": 0, "pos": 1},) | |
res_f13 = eval.compute(model_or_pipeline=pipe3, data=data, metric=f1, | |
label_mapping={"neg": 0, "pos": 1},) | |
print({**res_accuracy3, **res_f13}) | |
pipe4 = pipeline("text-classification", model=model4, tokenizer= tokenizer4, device=0) | |
res_accuracy4 = eval.compute(model_or_pipeline=pipe4, data=data, metric=accuracy, | |
label_mapping={"LABEL_0": 0, "LABEL_1": 1},) | |
res_f14 = eval.compute(model_or_pipeline=pipe4, data=data, metric=f1, | |
label_mapping={"LABEL_0": 0, "LABEL_1": 1},) | |
print({**res_accuracy4, **res_f14}) | |
pipe5 = pipeline("text-classification", model=model5, tokenizer= tokenizer5, device=0) | |
res_accuracy5 = eval.compute(model_or_pipeline=pipe5, data=data, metric=accuracy, | |
label_mapping={"LABEL_0": 0, "LABEL_1": 1},) | |
res_f15 = eval.compute(model_or_pipeline=pipe5, data=data, metric=f1, | |
label_mapping={"LABEL_0": 0, "LABEL_1": 1},) | |
print({**res_accuracy5, **res_f15}) | |
plt.plot(res_accuracy1['accuracy'], res_f11['f1'], marker='o', markersize=6, color="red") | |
plt.annotate('distilbert', xy=(res_accuracy1['accuracy']+0.001, res_f11['f1'])) | |
plt.plot(res_accuracy2['accuracy'], res_f12['f1'], marker='o', markersize=6, color="blue") | |
plt.annotate('distilbert-base-uncased-finetuned', xy=(res_accuracy2['accuracy']+0.001, res_f12['f1'])) | |
plt.plot(res_accuracy3['accuracy'], res_f13['f1'], marker='o', markersize=6, color="green") | |
plt.annotate('roberta-base', xy=(res_accuracy3['accuracy']-0.009, res_f13['f1'])) | |
plt.plot(res_accuracy4['accuracy'], res_f14['f1'], marker='o', markersize=6, color="purple") | |
plt.annotate('funnel-transformer-small', xy=(res_accuracy4['accuracy']-0.015, res_f14['f1'])) | |
plt.plot(res_accuracy5['accuracy'], res_f15['f1'], marker='o', markersize=6, color="black") | |
plt.annotate('SENATOR', xy=(res_accuracy5['accuracy']+0.001, res_f15['f1'])) | |
plt.xlabel('Accuracy') | |
plt.ylabel('F1 Score') | |
#plt.xlim([0.9, 1.0]) | |
#plt.ylim([0.9, 1.0]) | |
plt.title('Comparing the Models') | |
""" |