import librosa.display as lbd import matplotlib.pyplot as plt import soundfile import torch from .InferenceArchitectures.InferenceFastSpeech2 import FastSpeech2 from .InferenceArchitectures.InferenceHiFiGAN import HiFiGANGenerator from ..Preprocessing.ArticulatoryCombinedTextFrontend import ArticulatoryCombinedTextFrontend from ..Preprocessing.ArticulatoryCombinedTextFrontend import get_language_id class AnonFastSpeech2(torch.nn.Module): def __init__(self, device: str, path_to_hifigan_model: str, path_to_fastspeech_model: str): """ Args: device: Device to run on. CPU is feasible, still faster than real-time, but a GPU is significantly faster. path_to_hifigan_model: Path to the vocoder model, including filename and suffix. path_to_fastspeech_model: Path to the synthesis model, including filename and suffix. """ super().__init__() language = "en" self.device = device self.text2phone = ArticulatoryCombinedTextFrontend(language=language, add_silence_to_end=True) checkpoint = torch.load(path_to_fastspeech_model, map_location='cpu') self.phone2mel = FastSpeech2(weights=checkpoint["model"], lang_embs=None).to(torch.device(device)) self.mel2wav = HiFiGANGenerator(path_to_weights=path_to_hifigan_model).to(torch.device(device)) self.default_utterance_embedding = checkpoint["default_emb"].to(self.device) self.phone2mel.eval() self.mel2wav.eval() self.lang_id = get_language_id(language) self.to(torch.device(device)) def forward(self, text, view=False, text_is_phonemes=False): """ Args: text: The text that the TTS should convert to speech view: Boolean flag whether to produce and display a graphic showing the generated audio text_is_phonemes: Boolean flag whether the text parameter contains phonemes (True) or graphemes (False) Returns: 48kHz waveform as 1d tensor """ with torch.no_grad(): phones = self.text2phone.string_to_tensor(text, input_phonemes=text_is_phonemes).to(torch.device(self.device)) mel, durations, pitch, energy = self.phone2mel(phones, return_duration_pitch_energy=True, utterance_embedding=self.default_utterance_embedding) mel = mel.transpose(0, 1) wave = self.mel2wav(mel) if view: from Utility.utils import cumsum_durations fig, ax = plt.subplots(nrows=2, ncols=1) ax[0].plot(wave.cpu().numpy()) lbd.specshow(mel.cpu().numpy(), ax=ax[1], sr=16000, cmap='GnBu', y_axis='mel', x_axis=None, hop_length=256) ax[0].yaxis.set_visible(False) ax[1].yaxis.set_visible(False) duration_splits, label_positions = cumsum_durations(durations.cpu().numpy()) ax[1].set_xticks(duration_splits, minor=True) ax[1].xaxis.grid(True, which='minor') ax[1].set_xticks(label_positions, minor=False) ax[1].set_xticklabels(self.text2phone.get_phone_string(text)) ax[0].set_title(text) plt.subplots_adjust(left=0.05, bottom=0.1, right=0.95, top=.9, wspace=0.0, hspace=0.0) plt.show() return wave def anonymize_to_file(self, text: str, text_is_phonemes: bool, target_speaker_embedding: torch.tensor, path_to_result_file: str): """ Args: text: The text that the TTS should convert to speech text_is_phonemes: Boolean flag whether the text parameter contains phonemes (True) or graphemes (False) target_speaker_embedding: The speaker embedding that should be used for the produced speech path_to_result_file: The path to the location where the resulting speech should be saved (including the filename and .wav suffix) """ assert text.strip() != "" assert path_to_result_file.endswith(".wav") self.default_utterance_embedding = target_speaker_embedding.to(self.device) wav = self(text=text, text_is_phonemes=text_is_phonemes) soundfile.write(file=path_to_result_file, data=wav.cpu().numpy(), samplerate=48000)