// import { pipeline, env } from 'https://cdn.jsdelivr.net/npm/@xenova/transformers@2.10.1'; import { HfInference } from 'https://cdn.jsdelivr.net/npm/@huggingface/inference@2.7.0/+esm'; const inference = new HfInference(); // let pipe = await pipeline('text-generation', 'mistralai/Mistral-7B-Instruct-v0.2'); // models('Xenova/gpt2', 'Xenova/gpt-3.5-turbo', 'mistralai/Mistral-7B-Instruct-v0.2', 'Xenova/llama-68m', 'meta-llama/Meta-Llama-3-8B', 'Xenova/bloom-560m', 'Xenova/distilgpt2') // list of models by task: 'https://huggingface.co/docs/transformers.js/index#supported-tasksmodels' // Since we will download the model from the Hugging Face Hub, we can skip the local model check // env.allowLocalModels = false; ///////// VARIABLES let PROMPT, PREPROMPT, promptResult, submitButton, addButton, promptInput, inputValues, modelDisplay, modelResult // const detector = await pipeline('text-generation', 'meta-llama/Meta-Llama-3-8B', 'Xenova/LaMini-Flan-T5-783M'); let blankArray = [] let MODELNAME = 'Xenova/gpt-3.5-turbo' // models('Xenova/gpt2', 'Xenova/gpt-3.5-turbo', 'mistralai/Mistral-7B-Instruct-v0.2', 'Xenova/llama-68m', 'meta-llama/Meta-Llama-3-8B', 'Xenova/bloom-560m', 'Xenova/distilgpt2') ///// p5 STUFF new p5(function(p5){ p5.setup = function(){ console.log('p5 loaded') p5.noCanvas() makeInterface() } p5.draw = function(){ // } window.onload = function(){ console.log('dom and js loaded') } let fieldsDiv = document.querySelector("#blanks") function makeInterface(){ console.log('reached makeInterface') let title = p5.createElement('h1', 'p5.js Critical AI Prompt Battle') // title.position(0,50) p5.createElement('p',`This tool lets you run several AI chat prompts at once and compare their results. Use it to explore what models 'know' about various concepts, communities, and cultures. For more information on prompt programming and critical AI, see [XXX][TO-DO]`) // .position(0,100) promptInput = p5.createInput("") // promptInput.position(0,160) promptInput.size(600); promptInput.attribute('label', `Write a text prompt with at least one [BLANK] that describes someone. You can also write [FILL] where you want the bot to fill in a word on its own.`) promptInput.value(`The [BLANK] works as a [FILL] but wishes for...`) promptInput.addClass("prompt") p5.createP(promptInput.attribute('label')) // .position(0,100) //make for loop to generate //make a button to make another //add them to the list of items fieldsDiv = p5.createDiv() fieldsDiv.id('fieldsDiv') // fieldsDiv.position(0,250) // initial code to make a single field // blankA = p5.createInput(""); // blankA.position(0, 240); // blankA.size(300); // blankA.addClass("blank") // blankA.parent('#fieldsDiv') // function to generate a single BLANK form field instead addField() // // BUTTONS // // // send prompt to model submitButton = p5.createButton("SUBMIT") // submitButton.position(0,600) submitButton.size(200) submitButton.class('submit'); submitButton.mousePressed(getInputs) // add more blanks to fill in addButton = p5.createButton("more blanks") addButton.size(200) // addButton.position(150,600) addButton.mousePressed(addField) // modelDisplay = p5.createElement("p", "Results:"); // modelDisplay.position(0, 380); // // setTimeout(() => { // modelDisplay.html(modelResult) // // }, 2000); // TO-DO a model drop down list? // describe(``) // TO-DO alt-text description } function addField(){ let f = p5.createInput("") f.class("blank") f.parent("#fieldsDiv") // DOES THIS WORK??????????????????? blankArray.push(f) console.log("made field") // Cap the number of fields, avoids token limit in prompt let blanks = document.querySelectorAll(".blank") if (blanks.length > 7){ console.log(blanks.length) addButton.style('visibility','hidden') } } async function getInputs(){ // Map the list of blanks text values to a new list let inputValues = blankArray.map(i => i.value()) console.log(inputValues) // Do model stuff in this function instead of in general PROMPT = promptInput.value() // updated check of the prompt field BLANKS = inputValues // get ready to feed array list into model PREPROMPT = `Please return an array of sentences. In each sentence, fill in the [BLANK] in the following sentence with each word I provide in the array ${inputValues}. Replace any [FILL] with an appropriate word of your choice.` await runModel() } // var modelResult = submitButton.mousePressed(runModel) = function(){ // // listens for the button to be clicked // // run the prompt through the model here // // modelResult = runModel() // // return modelResult // runModel() // } // function makeblank(i){ // i = p5.createInput(""); // i.position(0, 300); //append to last blank and move buttons down // i.size(200); // } }); ///// MODEL STUFF // var PROMPT = `The [BLANK] works as a [blank] but wishes for [blank].` // /// this needs to run on button click, use string variables to blank in the form // var PROMPT = promptInput.value() // var blankArray = ["mother", "father", "sister", "brother"] // // for num of blanks put in list // var blankArray = [`${blankAResult}`, `${blankBResult}`, `${blankCResult}`] async function runModel(){ // Chat completion API const out = await inference.chatCompletion({ model: MODELNAME, // model: "google/gemma-2-9b", messages: [{ role: "user", content: PREPROMPT + PROMPT }], max_tokens: 100 }); // let out = await pipe(PREPROMPT + PROMPT) // let out = await pipe(PREPROMPT + PROMPT, { // max_new_tokens: 250, // temperature: 0.9, // // return_full_text: False, // repetition_penalty: 1.5, // // no_repeat_ngram_size: 2, // // num_beams: 2, // num_return_sequences: 1 // }); console.log(out) var modelResult = await out.choices[0].message.content // var modelResult = await out[0].generated_text console.log(modelResult); return modelResult } // Reference the elements that we will need // const status = document.getElementById('status'); // const fileUpload = document.getElementById('upload'); // const imageContainer = document.getElementById('container'); // const example = document.getElementById('example'); // const EXAMPLE_URL = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg'; // Create a new object detection pipeline // status.textContent = 'Loading model...'; // const detector = await pipeline('object-detection', 'Xenova/detr-resnet-50'); // status.textContent = 'Ready'; // example.addEventListener('click', (e) => { // e.preventDefault(); // detect(EXAMPLE_URL); // }); // fileUpload.addEventListener('change', function (e) { // const file = e.target.files[0]; // if (!file) { // return; // } // const reader = new FileReader(); // // Set up a callback when the file is loaded // reader.onload = e2 => detect(e2.target.result); // reader.readAsDataURL(file); // }); // // Detect objects in the image // async function detect(img) { // imageContainer.innerHTML = ''; // imageContainer.style.backgroundImage = `url(${img})`; // status.textContent = 'Analysing...'; // const output = await detector(img, { // threshold: 0.5, // percentage: true, // }); // status.textContent = ''; // output.forEach(renderBox); // } // // Render a bounding box and label on the image // function renderBox({ box, label }) { // const { xmax, xmin, ymax, ymin } = box; // // Generate a random color for the box // const color = '#' + Math.floor(Math.random() * 0xFFFFFF).toString(16).padStart(6, 0); // // Draw the box // const boxElement = document.createElement('div'); // boxElement.className = 'bounding-box'; // Object.assign(boxElement.style, { // borderColor: color, // left: 100 * xmin + '%', // top: 100 * ymin + '%', // width: 100 * (xmax - xmin) + '%', // height: 100 * (ymax - ymin) + '%', // }) // // Draw label // const labelElement = document.createElement('span'); // labelElement.textContent = label; // labelElement.className = 'bounding-box-label'; // labelElement.style.backgroundColor = color; // boxElement.appendChild(labelElement); // imageContainer.appendChild(boxElement); // } // function setup(){ // let canvas = createCanvas(200,200) // canvas.position(300, 1000); // background(200) // textSize(20) // textAlign(CENTER,CENTER) // console.log('p5 loaded') // } // function draw(){ // // // }