Sarah Ciston
commited on
Commit
·
cf748ec
1
Parent(s):
558b7ef
try with top_k roberta model
Browse files
README.md
CHANGED
@@ -12,6 +12,7 @@ hf_oauth_scopes:
|
|
12 |
- inference-api
|
13 |
models:
|
14 |
- bert-base-uncased
|
|
|
15 |
# - gpt-3.5-turbo
|
16 |
# - bigscience/bloom-560m
|
17 |
# - Xenova/distilgpt2
|
|
|
12 |
- inference-api
|
13 |
models:
|
14 |
- bert-base-uncased
|
15 |
+
- distilroberta-base
|
16 |
# - gpt-3.5-turbo
|
17 |
# - bigscience/bloom-560m
|
18 |
# - Xenova/distilgpt2
|
sketch.js
CHANGED
@@ -77,7 +77,7 @@ new p5(function (p5) {
|
|
77 |
// promptInput.position(0,160)
|
78 |
promptInput.size(600);
|
79 |
promptInput.attribute('label', `Write a text prompt with at least one [BLANK] that describes someone. You can also write [FILL] where you want the bot to fill in a word on its own.`)
|
80 |
-
promptInput.value(`The [BLANK] works as a [
|
81 |
promptInput.addClass("prompt")
|
82 |
p5.createP(promptInput.attribute('label'))
|
83 |
// .position(0,100)
|
@@ -158,7 +158,6 @@ new p5(function (p5) {
|
|
158 |
// // Please return an array of sentences based on the sample sentence to follow. In each sentence,
|
159 |
|
160 |
// // let modelResult = await runModel(PREPROMPT, PROMPT)
|
161 |
-
// let modelResult = await runModel(BLANKSVALUES, PROMPT)
|
162 |
|
163 |
// await displayModel(modelResult)
|
164 |
// }
|
@@ -166,33 +165,36 @@ new p5(function (p5) {
|
|
166 |
// creating multiple prompt inputs rather than instructing model to do so
|
167 |
async function getInputs(){
|
168 |
// Map the list of blanks text values to a new list
|
169 |
-
let BLANKSVALUES = blanksArray.map(i => i.value())
|
170 |
-
console.log(BLANKSVALUES)
|
171 |
|
172 |
// Do model stuff in this function instead of in general
|
173 |
let PROMPT = promptInput.value() // updated check of the prompt field
|
174 |
|
175 |
// BLANKS = inputValues // get ready to feed array list into model
|
176 |
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
|
|
185 |
|
186 |
// let PREPROMPT = `In the sentence I provide, please fill in the [BLANK] with each word in the array ${BLANKSVALUES}, replace any [MASK] with a word of your choice. Here is the SAMPLE SENTENCE: `
|
187 |
|
188 |
// we pass PROMPT and PREPROMPT to the model function, don't need to pass BLANKSVALUES bc it's passed into the PREPROMPT already here
|
189 |
|
190 |
// Please return an array of sentences based on the sample sentence to follow. In each sentence,
|
191 |
-
|
|
|
192 |
// let modelResult = await runModel(PREPROMPT, PROMPT)
|
193 |
-
let modelResult = await runModel(PROMPTS)
|
194 |
-
|
195 |
-
await displayModel(
|
|
|
196 |
}
|
197 |
|
198 |
async function displayModel(m){
|
@@ -346,20 +348,28 @@ new p5(function (p5) {
|
|
346 |
// }
|
347 |
|
348 |
|
349 |
-
async function runModel(PROMPTS){
|
|
|
350 |
|
351 |
-
let MODELNAME = "bert-base-uncased"
|
|
|
352 |
|
353 |
-
let unmasker = await pipeline('fill-mask',
|
354 |
|
355 |
-
|
356 |
-
var res = unmasker(p)
|
357 |
-
console.log(res)
|
358 |
|
359 |
-
|
360 |
-
console.log(modelResult)
|
361 |
|
362 |
-
|
363 |
-
|
364 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
365 |
}
|
|
|
77 |
// promptInput.position(0,160)
|
78 |
promptInput.size(600);
|
79 |
promptInput.attribute('label', `Write a text prompt with at least one [BLANK] that describes someone. You can also write [FILL] where you want the bot to fill in a word on its own.`)
|
80 |
+
promptInput.value(`The [BLANK] works as a [mask] but ...`)
|
81 |
promptInput.addClass("prompt")
|
82 |
p5.createP(promptInput.attribute('label'))
|
83 |
// .position(0,100)
|
|
|
158 |
// // Please return an array of sentences based on the sample sentence to follow. In each sentence,
|
159 |
|
160 |
// // let modelResult = await runModel(PREPROMPT, PROMPT)
|
|
|
161 |
|
162 |
// await displayModel(modelResult)
|
163 |
// }
|
|
|
165 |
// creating multiple prompt inputs rather than instructing model to do so
|
166 |
async function getInputs(){
|
167 |
// Map the list of blanks text values to a new list
|
168 |
+
// let BLANKSVALUES = blanksArray.map(i => i.value())
|
169 |
+
// console.log(BLANKSVALUES)
|
170 |
|
171 |
// Do model stuff in this function instead of in general
|
172 |
let PROMPT = promptInput.value() // updated check of the prompt field
|
173 |
|
174 |
// BLANKS = inputValues // get ready to feed array list into model
|
175 |
|
176 |
+
// for running MULTIPLE PROMPTS AT ONCE
|
177 |
+
// let PROMPTS = []
|
178 |
+
// for (let b in BLANKSVALUES){
|
179 |
+
// console.log(BLANKSVALUES[b])
|
180 |
+
// let p = PROMPT.replace('[BLANK]', `${BLANKSVALUES[b]}`)
|
181 |
+
// console.log(p)
|
182 |
+
// PROMPTS.push(p)
|
183 |
+
// }
|
184 |
+
// console.log(PROMPTS)
|
185 |
|
186 |
// let PREPROMPT = `In the sentence I provide, please fill in the [BLANK] with each word in the array ${BLANKSVALUES}, replace any [MASK] with a word of your choice. Here is the SAMPLE SENTENCE: `
|
187 |
|
188 |
// we pass PROMPT and PREPROMPT to the model function, don't need to pass BLANKSVALUES bc it's passed into the PREPROMPT already here
|
189 |
|
190 |
// Please return an array of sentences based on the sample sentence to follow. In each sentence,
|
191 |
+
|
192 |
+
let modelResult = await runModel(PROMPT)
|
193 |
// let modelResult = await runModel(PREPROMPT, PROMPT)
|
194 |
+
// let modelResult = await runModel(PROMPTS)
|
195 |
+
|
196 |
+
await displayModel(modelResult)
|
197 |
+
// await displayModel(resultsArray[0], resultsArray[1])
|
198 |
}
|
199 |
|
200 |
async function displayModel(m){
|
|
|
348 |
// }
|
349 |
|
350 |
|
351 |
+
// async function runModel(PROMPTS){
|
352 |
+
async function runModel(PROMPT){
|
353 |
|
354 |
+
// let MODELNAME = "bert-base-uncased"
|
355 |
+
let MODELNAME = 'distilroberta-base'
|
356 |
|
357 |
+
let unmasker = await pipeline('fill-mask', MODELNAME)
|
358 |
|
359 |
+
let res = unmasker(PROMPT, top_k=5)
|
|
|
|
|
360 |
|
361 |
+
var modelResult = res
|
|
|
362 |
|
363 |
+
return modelResult
|
364 |
+
|
365 |
+
// for (let p in PROMPTS){
|
366 |
+
// var res = unmasker(p)
|
367 |
+
// console.log(res)
|
368 |
+
|
369 |
+
// var modelResult = res[0].token_str
|
370 |
+
// console.log(modelResult)
|
371 |
+
|
372 |
+
// resultsArray.push(modelResult)
|
373 |
+
// }
|
374 |
+
// return resultsArray
|
375 |
}
|