Spaces:
Running
Running
santiviquez
commited on
Commit
Β·
29457c0
1
Parent(s):
3d8b507
add everything
Browse files
app.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from huggingface_hub import hf_hub_url, cached_download
|
3 |
+
import torch
|
4 |
+
import torchaudio.transforms as transforms
|
5 |
+
from miniaudio import SampleFormat, decode
|
6 |
+
from librosa.util import fix_length
|
7 |
+
import numpy as np
|
8 |
+
from audio_recorder_streamlit import audio_recorder
|
9 |
+
|
10 |
+
|
11 |
+
# Streamlit app title
|
12 |
+
st.markdown("## Noisy Human")
|
13 |
+
st.markdown("")
|
14 |
+
st.markdown(
|
15 |
+
"Non-speach human sounds classification. This model can identify with up to 78/% accuracy the following 10 classes"
|
16 |
+
)
|
17 |
+
|
18 |
+
col1, col2 = st.columns(2)
|
19 |
+
with st.container():
|
20 |
+
with col1:
|
21 |
+
st.markdown(
|
22 |
+
"""
|
23 |
+
* Clapping π
|
24 |
+
* Footsteps π¦Ά
|
25 |
+
* Brushing Teeth πͺ₯
|
26 |
+
* Drinking Sipping π§
|
27 |
+
* Laughing π
|
28 |
+
"""
|
29 |
+
)
|
30 |
+
|
31 |
+
with col2:
|
32 |
+
st.markdown(
|
33 |
+
"""
|
34 |
+
|
35 |
+
* Breathing π¬οΈ
|
36 |
+
* Crying Baby π
|
37 |
+
* Coughing π€§
|
38 |
+
* Snoring π΄
|
39 |
+
* Sneezing π€§
|
40 |
+
"""
|
41 |
+
)
|
42 |
+
|
43 |
+
# from audio_recorder_streamlit import audio_recorder
|
44 |
+
|
45 |
+
from cnn import CNN
|
46 |
+
|
47 |
+
REPO_ID = "santiviquez/noisy_human_cnn"
|
48 |
+
FILENAME = "CNN_MelSpec_Deltas_fold_4_.pth"
|
49 |
+
RATE = 22050
|
50 |
+
|
51 |
+
|
52 |
+
@st.cache
|
53 |
+
def download_model():
|
54 |
+
model_weights = torch.load(
|
55 |
+
cached_download(hf_hub_url(REPO_ID, FILENAME)), map_location=torch.device("cpu")
|
56 |
+
)
|
57 |
+
return model_weights
|
58 |
+
|
59 |
+
|
60 |
+
model_weights = download_model()
|
61 |
+
model = CNN(input_channels=2)
|
62 |
+
model.load_state_dict(model_weights)
|
63 |
+
model.eval()
|
64 |
+
audio_bytes = st.file_uploader(
|
65 |
+
"Choose an audio (.wav) file", accept_multiple_files=False
|
66 |
+
)
|
67 |
+
st.caption("OR")
|
68 |
+
audio_bytes = audio_recorder()
|
69 |
+
|
70 |
+
if audio_bytes:
|
71 |
+
# audio_bytes = audio_file_path.read()
|
72 |
+
st.audio(audio_bytes, format="audio/ogg")
|
73 |
+
# st.audio(audio_bytes, format="audio/ogg")
|
74 |
+
# torch.tensor(audio_bytes).shape
|
75 |
+
decoded_audio = decode(
|
76 |
+
audio_bytes, nchannels=1, sample_rate=RATE, output_format=SampleFormat.SIGNED32
|
77 |
+
)
|
78 |
+
|
79 |
+
waveform = np.array(decoded_audio.samples)
|
80 |
+
waveform = fix_length(waveform, 5 * RATE)
|
81 |
+
waveform = torch.FloatTensor(waveform)
|
82 |
+
|
83 |
+
x_mel = transforms.MelSpectrogram(sample_rate=RATE, n_fft=1024, n_mels=60)(waveform)
|
84 |
+
x_deltas = transforms.ComputeDeltas()(x_mel)
|
85 |
+
x = torch.cat((x_mel, x_deltas)).view(1, 2, 60, 216)
|
86 |
+
|
87 |
+
y_pred = model(x)
|
88 |
+
y_pred_softmax = torch.log_softmax(y_pred, dim=1)
|
89 |
+
_, y_pred_tags = torch.max(y_pred_softmax, dim=1)
|
90 |
+
|
91 |
+
category_map = {
|
92 |
+
0: "Clapping π",
|
93 |
+
1: "Footsteps π¦Ά",
|
94 |
+
2: "Brushing Teeth πͺ₯",
|
95 |
+
3: "Drinking Sipping π§",
|
96 |
+
4: "Laughing π",
|
97 |
+
5: "Breathing π¬οΈ",
|
98 |
+
6: "Crying Baby π",
|
99 |
+
7: "Coughing π€§",
|
100 |
+
8: "Snoring π΄",
|
101 |
+
9: "Sneezing π€§",
|
102 |
+
}
|
103 |
+
|
104 |
+
st.write("**Predicted class:**", category_map[y_pred_tags.item()])
|
105 |
+
|
106 |
+
st.text("")
|
107 |
+
st.text("")
|
108 |
+
st.text("")
|
109 |
+
st.markdown(
|
110 |
+
"""`Create by` [Santiago Viquez](https://twitter.com/santiviquez)
|
111 |
+
and [Ivan Padezhki](https://github.com/ivanpadezhki)
|
112 |
+
| `Code:` [GitHub](https://github.com/santiviquez/noisy-human-recognition)"""
|
113 |
+
)
|
cnn.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import torch.nn.functional as F
|
3 |
+
|
4 |
+
|
5 |
+
class CNN(nn.Module):
|
6 |
+
def __init__(self, input_channels):
|
7 |
+
super(CNN, self).__init__()
|
8 |
+
self.input_channels = input_channels
|
9 |
+
self.conv1 = nn.Conv2d(self.input_channels, 32, kernel_size=(3, 3))
|
10 |
+
self.batchnorm1 = nn.BatchNorm2d(32)
|
11 |
+
self.pool1 = nn.MaxPool2d(kernel_size=(3, 3))
|
12 |
+
self.dropout1 = nn.Dropout(0.3)
|
13 |
+
self.conv2 = nn.Conv2d(32, 64, kernel_size=(3, 3))
|
14 |
+
self.batchnorm2 = nn.BatchNorm2d(64)
|
15 |
+
self.pool2 = nn.MaxPool2d(kernel_size=(1, 3))
|
16 |
+
self.conv3 = nn.Conv2d(64, 128, kernel_size=(3, 3))
|
17 |
+
self.batchnorm3 = nn.BatchNorm2d(128)
|
18 |
+
self.pool3 = nn.MaxPool2d(kernel_size=2)
|
19 |
+
self.dropout2 = nn.Dropout(0.3)
|
20 |
+
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
21 |
+
self.fc1 = nn.Linear(128, 256)
|
22 |
+
self.fc2 = nn.Linear(256, 512)
|
23 |
+
self.dropout3 = nn.Dropout(0.5)
|
24 |
+
self.fc3 = nn.Linear(512, 10)
|
25 |
+
self.apply(self._init_weights)
|
26 |
+
|
27 |
+
def _init_weights(self, module):
|
28 |
+
if isinstance(module, nn.Conv2d):
|
29 |
+
nn.init.xavier_normal_(module.weight.data)
|
30 |
+
if module.bias is not None:
|
31 |
+
nn.init.constant_(module.bias.data, 0)
|
32 |
+
|
33 |
+
elif isinstance(module, nn.BatchNorm2d):
|
34 |
+
nn.init.constant_(module.weight.data, 1)
|
35 |
+
nn.init.constant_(module.bias.data, 0)
|
36 |
+
|
37 |
+
elif isinstance(module, nn.Linear):
|
38 |
+
n = module.in_features
|
39 |
+
y = 1.0 / n ** (1/2)
|
40 |
+
module.weight.data.uniform_(-y, y)
|
41 |
+
module.bias.data.fill_(0)
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
x = self.conv1(x)
|
45 |
+
x = F.relu(x)
|
46 |
+
x = self.batchnorm1(x)
|
47 |
+
x = self.pool1(x)
|
48 |
+
x = self.dropout1(x)
|
49 |
+
x = self.conv2(x)
|
50 |
+
x = F.relu(x)
|
51 |
+
x = self.batchnorm2(x)
|
52 |
+
x = self.pool2(x)
|
53 |
+
x = self.conv3(x)
|
54 |
+
x = F.relu(x)
|
55 |
+
x = self.batchnorm3(x)
|
56 |
+
x = self.pool3(x)
|
57 |
+
x = self.dropout2(x)
|
58 |
+
x = self.avgpool(x)
|
59 |
+
x = x.view(x.size(0), -1)
|
60 |
+
x = self.fc1(x)
|
61 |
+
x = F.relu(x)
|
62 |
+
x = self.dropout3(x)
|
63 |
+
x = self.fc2(x)
|
64 |
+
x = F.relu(x)
|
65 |
+
x = self.dropout3(x)
|
66 |
+
x = self.fc3(x)
|
67 |
+
return x
|