Spaces:
Runtime error
Runtime error
File size: 9,649 Bytes
c9c9be5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import sys
import os
import logging as log
from typing import Generator
import gradio as gr
from gradio.themes.utils import sizes
from text_generation import Client
from src.request import StarCoderRequest, StarCoderRequestConfig
from src.utils import (
get_file_as_string,
get_sections,
get_url_from_env_or_default_path,
preview
)
from constants import (
FIM_MIDDLE,
FIM_PREFIX,
FIM_SUFFIX,
END_OF_TEXT,
MIN_TEMPERATURE,
)
from settings import (
DEFAULT_PORT,
DEFAULT_STARCODER_API_PATH,
DEFAULT_STARCODER_BASE_API_PATH,
)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# Gracefully exit the app if the HF_TOKEN is not set,
# printing to system `errout` the error (instead of raising an exception)
# and the expected behavior
if not HF_TOKEN:
ERR_MSG = """
Please set the HF_TOKEN environment variable with your Hugging Face API token.
You can get one by signing up at https://huggingface.co/join and then visiting
https://huggingface.co/settings/tokens."""
print(ERR_MSG, file=sys.stderr)
# gr.errors.GradioError(ERR_MSG)
# gr.close_all(verbose=False)
sys.exit(1)
API_URL_STAR = get_url_from_env_or_default_path("STARCODER_API", DEFAULT_STARCODER_API_PATH)
API_URL_BASE = get_url_from_env_or_default_path("STARCODER_BASE_API", DEFAULT_STARCODER_BASE_API_PATH)
preview("StarCoder Model URL", API_URL_STAR)
preview("StarCoderBase Model URL", API_URL_BASE)
preview("HF Token", HF_TOKEN, ofuscate=True)
_styles = get_file_as_string("styles.css")
_script = get_file_as_string("community-btn.js")
_sharing_icon_svg = get_file_as_string("community-icon.svg")
_loading_icon_svg = get_file_as_string("loading-icon.svg")
# Loads the whole content of the ./README.md file
# slicing/unpacking its different sections into their proper variables
readme_file_content = get_file_as_string("README.md", path='./')
(
manifest,
description,
disclaimer,
formats,
) = get_sections(readme_file_content, "---", up_to=4)
theme = gr.themes.Monochrome(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate",
radius_size=sizes.radius_sm,
font=[
gr.themes.GoogleFont("IBM Plex Sans", [400, 600]),
"ui-sans-serif",
"system-ui",
"sans-serif",
],
text_size=sizes.text_lg,
)
HEADERS = {
"Authorization": f"Bearer {HF_TOKEN}",
}
client_star = Client(API_URL_STAR, headers=HEADERS)
client_base = Client(API_URL_BASE, headers=HEADERS)
def get_tokens_collector(request: StarCoderRequest) -> Generator[str, None, None]:
model_client = client_star if request.settings.version == "StarCoder" else client_base
stream = model_client.generate_stream(request.prompt, **request.settings.kwargs())
for response in stream:
# print(response.token.id, response.token.text)
# if token.text != END_OF_TEXT:
if response.token.id != 0:
yield response.token.text
def get_tokens_accumulator(request: StarCoderRequest) -> Generator[str, None, None]:
# start with the prefix (if in fim_mode)
output = request.prefix if request.fim_mode else request.prompt
for token in get_tokens_collector(request=request):
output += token
yield output
# after the last token, append the suffix (if in fim_mode)
if request.fim_mode:
output += request.suffix
yield output
# Append an extra line at the end
yield output + '\n'
def get_tokens_linker(request: StarCoderRequest) -> str:
return "".join(list(get_tokens_collector(request)))
def generate(
prompt: str,
temperature = 0.9,
max_new_tokens = 256,
top_p = 0.95,
repetition_penalty = 1.0,
version = "StarCoder",
) -> Generator[str, None, None]:
request = StarCoderRequest(
prompt=prompt,
settings=StarCoderRequestConfig(
version=version,
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
)
yield from get_tokens_accumulator(request)
def process_example(
prompt: str,
temperature = 0.9,
max_new_tokens = 256,
top_p = 0.95,
repetition_penalty = 1.0,
version = "StarCoder",
) -> Generator[str, None, None]:
request = StarCoderRequest(
prompt=prompt,
settings=StarCoderRequestConfig(
version=version,
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
)
yield from get_tokens_linker(request)
# todo: move it into the README too
examples = [
"X_train, y_train, X_test, y_test = train_test_split(X, y, test_size=0.1)\n\n# Train a logistic regression model, predict the labels on the test set and compute the accuracy score",
"// Returns every other value in the array as a new array.\nfunction everyOther(arr) {",
"def alternating(list1, list2):\n results = []\n for i in range(min(len(list1), len(list2))):\n results.append(list1[i])\n results.append(list2[i])\n if len(list1) > len(list2):\n <FILL_HERE>\n else:\n results.extend(list2[i+1:])\n return results",
]
with gr.Blocks(theme=theme, analytics_enabled=False, css=_styles) as demo:
with gr.Column():
gr.Markdown(description)
with gr.Row():
with gr.Column():
instruction = gr.Textbox(
placeholder="Enter your code here",
label="Code",
elem_id="q-input",
)
submit = gr.Button("Generate", variant="primary")
output = gr.Code(elem_id="q-output", lines=30)
with gr.Row():
with gr.Column():
with gr.Accordion("Advanced settings", open=False):
with gr.Row():
column_1, column_2 = gr.Column(), gr.Column()
with column_1:
temperature = gr.Slider(
label="Temperature",
value=0.2,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
)
max_new_tokens = gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=8192,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
)
with column_2:
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
)
repetition_penalty = gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
with gr.Column():
version = gr.Dropdown(
["StarCoderBase", "StarCoder"],
value="StarCoder",
label="Version",
info="",
)
gr.Markdown(disclaimer)
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(_sharing_icon_svg, visible=True)
loading_icon = gr.HTML(_loading_icon_svg, visible=True)
share_button = gr.Button(
"Share to community", elem_id="share-btn", visible=True
)
gr.Examples(
examples=examples,
inputs=[instruction],
cache_examples=False,
fn=process_example,
outputs=[output],
)
gr.Markdown(formats)
submit.click(
generate,
inputs=[instruction, temperature, max_new_tokens, top_p, repetition_penalty, version],
outputs=[output],
# preprocess=False,
max_batch_size=8,
show_progress=True
)
share_button.click(None, [], [], _js=_script)
demo.queue(concurrency_count=16).launch(debug=True, server_port=DEFAULT_PORT)
|