samueldomdey's picture
Update app.py
af78d78
raw
history blame
2.56 kB
import gradio as gr
import requests
from PIL import Image
from sentence_transformers import SentenceTransformer, util
# define model
model_sentence = SentenceTransformer('clip-ViT-B-32')
# functions
def download_images(url):
'''
This function:
1. takes in a URL
2. downloads the raw content (image)
3. reads this image out
4. returns temp img, HTTP status code and flag
'''
try:
# request image
response = requests.get(url, stream=True, timeout=3.5).raw
# request status code (can't be done with .raw)
status_code = requests.get(url).status_code
# read in image
image = Image.open(response)
# convert all images to rgb -> case png is in rgba format
rgb_im = image.convert('RGB')
# return temp image, status code and flag
return rgb_im, status_code, 0
except:
print("error", status_code)
# error flag
return "error url", "", -1
def clip_sim_preds(url, text):
'''
This function:
1. Takes in an URL/Text/ID pair
2. Calls download images
3. Receives a temp image
4. Feeds the image/text-pair into the defined clip model
5. returns calculated similarities
'''
# call download images
image, status_code, flag = download_images(url)
# if no error occured and temp image successfully downloaded, proceed
if flag == 0:
try:
# Encode an image:
img_emb = model_sentence.encode(image)
# Encode text descriptions
text_emb = model_sentence.encode([text])
# Compute cosine similarities
cos_scores = util.cos_sim(img_emb, text_emb)
# return the predicted similarity, flag
return cos_scores.item()
except:
return "error clip_si"
# if error occured, indicate this with -1 flag
else:
return "error"
# define app
# takes in url of an image and a corresponding text, computes and returns cosine similarity
gr.Interface(clip_sim_preds,
inputs=[gr.inputs.Textbox(lines=1, placeholder=None, default="http://images.cocodataset.org/val2017/000000039769.jpg", label="URL", optional=False),
gr.inputs.Textbox(lines=1, placeholder=None, default="two cats with black stripes on a purple blanket, tv remotes, green collar", label="Text", optional=False)],
outputs=[gr.outputs.Textbox(type="auto", label="Cosine similarity")],
theme="huggingface",
title="Clip Cosine similarity",
description="Cosine similarity of image/text pair using a multimodal clip model",
allow_flagging=False,).launch(debug=True)