Spaces:
Runtime error
Runtime error
import gradio as gr | |
import requests | |
from PIL import Image | |
from sentence_transformers import SentenceTransformer, util | |
# define model | |
model_sentence = SentenceTransformer('clip-ViT-B-32') | |
# functions | |
def download_images(url): | |
''' | |
This function: | |
1. takes in a URL | |
2. downloads the raw content (image) | |
3. reads this image out | |
4. returns temp img, HTTP status code and flag | |
''' | |
try: | |
# request image | |
response = requests.get(url, stream=True, timeout=3.5).raw | |
# request status code (can't be done with .raw) | |
status_code = requests.get(url).status_code | |
# read in image | |
image = Image.open(response) | |
# convert all images to rgb -> case png is in rgba format | |
rgb_im = image.convert('RGB') | |
# return temp image, status code and flag | |
return rgb_im, status_code, 0 | |
except: | |
print("error", status_code) | |
# error flag | |
return "error url", "", -1 | |
def clip_sim_preds(url, text): | |
''' | |
This function: | |
1. Takes in an URL/Text/ID pair | |
2. Calls download images | |
3. Receives a temp image | |
4. Feeds the image/text-pair into the defined clip model | |
5. returns calculated similarities | |
''' | |
# call download images | |
image, status_code, flag = download_images(url) | |
# if no error occured and temp image successfully downloaded, proceed | |
if flag == 0: | |
try: | |
# Encode an image: | |
img_emb = model_sentence.encode(image) | |
# Encode text descriptions | |
text_emb = model_sentence.encode([text]) | |
# Compute cosine similarities | |
cos_scores = util.cos_sim(img_emb, text_emb) | |
# return the predicted similarity, flag | |
return cos_scores.item() | |
except: | |
return "error clip_si" | |
# if error occured, indicate this with -1 flag | |
else: | |
return "error" | |
# define app | |
# takes in url of an image and a corresponding text, computes and returns cosine similarity | |
gr.Interface(clip_sim_preds, | |
inputs=[gr.inputs.Textbox(lines=1, placeholder=None, default="http://images.cocodataset.org/val2017/000000039769.jpg", label="URL", optional=False), | |
gr.inputs.Textbox(lines=1, placeholder=None, default="two cats with black stripes on a purple blanket, tv remotes, green collar", label="Text", optional=False)], | |
outputs=[gr.outputs.Textbox(type="auto", label="Cosine similarity")], | |
theme="huggingface", | |
title="Clip Cosine similarity", | |
description="Cosine similarity of image/text pair using a multimodal clip model", | |
allow_flagging=False,).launch(debug=True) |