import json import numpy as np import drawsvg as draw import colorsys import tempfile, os def filter_time(e, start, end): # return e["start_time"] >= start and (end is None or e["completion_time"] <= end) # Check completion_time here to include the last long W return e.completion_time >= start and (end is None or e.completion_time <= end) def load_json_data(filename, start=0, end=None, time_scale=1): with open(filename) as f: data = json.loads(f.read()) fbw_types = {"F", "B", "W", "Optimizer"} return [[{ "type": e["type"], "start_time": int(max(e["start_time"] - start, 0)) * time_scale, "completion_time": int(e["completion_time"] - start) * time_scale, "minibatch": e.get("minibatch", None), } for e in dev_evs if e["type"] in fbw_types and filter_time(e, start, end) ] for dev_evs in data] ENABLE_BORDER = True ENABLE_BATCH_ID = True ENABLE_EDGE_BLUR = False SCALE_FACTOR = 2 S = SCALE_FACTOR # TIME_PER_UNIT = 300 // SCALE_FACTOR TIME_PER_UNIT = 4000 // SCALE_FACTOR def to_color_fmt(c): # c = to_greyscale(c) return f"#{hex(c[0])[2:]}{hex(c[1])[2:]}{hex(c[2])[2:]}" GREYSCALE_WEIGHTS = np.array([0.299, 0.587, 0.114]) def to_greyscale(color): c = np.dot(GREYSCALE_WEIGHTS, color[:3].astype(float)).astype(int) return np.array([c, c, c, 255]) COLOR_VALUE_MAP = { "F": np.array([57, 122, 242]), "B": np.array([62, 181, 191]), # "B": np.array([68, 211, 218]), # sea color # "W": to_color_fmt(np.array([47, 158, 73, 255])), "W": np.array([41, 137, 64]), # "W": np.array([224, 240, 231]), # sea color # "Optimizer": to_color_fmt(np.array([255, 240, 197, 255])), "Optimizer": np.array([255, 217, 102]), } COLOR_MAP = {k: to_color_fmt(v) for k, v in COLOR_VALUE_MAP.items()} # BORDER_SIZE = SCALE_FACTOR // 2 BORDER_SIZE = 1 SPAN_HEIGHT = SCALE_FACTOR * 10 FONT_SIZE = SCALE_FACTOR * 10 TITLE_WIDTH = SCALE_FACTOR * 60 CENTER_TITLE_HEIGHT = SPAN_HEIGHT * 6 WHITE = to_color_fmt(np.array([255, 255, 255, 255])) BLACK = to_color_fmt(np.array([0, 0, 0, 255])) class DrawCtx: def __init__(self, d, oy, ox): assert not isinstance(d, DrawCtx) self.d = d self.oy = oy self.ox = ox @classmethod def from_base_ctx(cls, base_ctx, oy, ox): assert isinstance(base_ctx, DrawCtx) return cls(base_ctx.d, base_ctx.oy + oy, base_ctx.ox + ox) def width(self): return self.d.width def height(self): return self.d.height def line(self, sy, sx, ey, ex, width=None): self.d.append(draw.Line( self.ox + sx, self.oy + sy, self.ox + ex, self.oy + ey, stroke='black', stroke_width=width or BORDER_SIZE, )) def rect(self, sy, sx, h, w, color): self.d.append(draw.Rectangle( self.ox + sx, self.oy + sy, w, h, fill=color, shape_rendering="geometricPrecision", )) def rect_frame(self, sy, sx, h, w): self.d.append(draw.Rectangle( self.ox + sx, self.oy + sy, w, h, fill="none", stroke=BLACK, stroke_width=BORDER_SIZE, )) def text(self, y, x, text, anchor="middle", font_scale=1, fill='black'): font_size = FONT_SIZE * font_scale tl = len(text) * font_size // 2 self.d.append(draw.Text( text, font_size, self.ox + x, # Magic 3 to make it vertical center self.oy + y + font_size - 3, textLength=tl, lengthAdjust='spacing', text_anchor=anchor, font_family="Times New Roman", fill=fill, # font_style="oblique", # font_family="Computer Modern Roman", )) def change_color_sat(c, percentage): c = c.astype(float) / 255.0 (h, s, v) = colorsys.rgb_to_hsv(c[0], c[1], c[2]) s *= percentage r, g, b = colorsys.hsv_to_rgb(h, s, v) c = np.array([r, g, b]) * 255 return c.astype(int) def draw_experiment_and_schedule(exp_events, sched_events, output_filename, tail=10): exp_canvas_info = CanvasInfo(exp_events, tail, 0) sched_canvas_info = CanvasInfo(sched_events, tail, 0, False) width = max(exp_canvas_info.get_canvas_size()[1], sched_canvas_info.get_canvas_size()[1]) height = exp_canvas_info.get_canvas_size()[0] + sched_canvas_info.get_canvas_size()[0] include_w = True # d = draw.Drawing(width, sched_canvas_info.get_canvas_size()[0], origin="top-left") d = draw.Drawing(width, height, origin="top-left") ctx = DrawCtx(d, 0, 0) plot_events(ctx, sched_events, "", sched_canvas_info, include_w, include_o=False, include_info=False) # plot_events(ctx, sched_events, "", sched_canvas_info, include_w, include_o=False) # d.save_svg("pics/schedule.svg") # d = draw.Drawing(width, sched_canvas_info.get_canvas_size()[0], origin="top-left") # exp_ctx = DrawCtx(d, 0, 0) exp_ctx = DrawCtx.from_base_ctx(ctx, sched_canvas_info.get_canvas_size()[0], 0) plot_events(exp_ctx, exp_events, "", exp_canvas_info, include_w, include_o=True) # plot_events(exp_ctx, exp_events, "", exp_canvas_info, include_w, include_o=True) d.save_svg(output_filename) def draw_events(events, output_filename, include_w=True, include_o=True, tail=50): canvas_info = CanvasInfo(events, tail, center_title_height=0, enable_info=True) max_len = canvas_info.max_len # height = canvas_info.height # info_height = canvas_info.info_height height, width = canvas_info.get_canvas_size() d = draw.Drawing(width, height, origin="top-left") ctx = DrawCtx(d, 0, 0) plot_events(ctx, events, "", canvas_info, include_w, include_o) d.save_svg(output_filename) class CanvasInfo: def __init__(self, events, tail, center_title_height=CENTER_TITLE_HEIGHT, enable_info=True): last_time = max(max([e["completion_time"] for e in dev_evs]) for dev_evs in events) self.max_len = (last_time + TIME_PER_UNIT - 1) // TIME_PER_UNIT + tail self.height = SPAN_HEIGHT * len(events) + BORDER_SIZE * (len(events) + 1) color_text_row_height = int(SPAN_HEIGHT * 1.6) self.color_text_height = color_text_row_height + BORDER_SIZE self.info_height = SPAN_HEIGHT + color_text_row_height + 3 * BORDER_SIZE if not enable_info: self.info_height /= 2 self.center_title_height = center_title_height # self.center_title_height = 0 def get_canvas_size(self): # height, width return self.height + self.info_height + self.center_title_height, self.max_len + TITLE_WIDTH def plot_events(ctx, events, title_text: str, canvas_info: CanvasInfo, include_w=True, include_o=True, include_info=True): max_len = canvas_info.max_len height = canvas_info.height color_text_height = canvas_info.color_text_height info_height = canvas_info.info_height data_ctx = DrawCtx.from_base_ctx(ctx, 0, TITLE_WIDTH) for i, evs in enumerate(events): h = i * SPAN_HEIGHT + (i + 1) * BORDER_SIZE for e in evs: start = BORDER_SIZE + e["start_time"] // TIME_PER_UNIT end = BORDER_SIZE + e["completion_time"] // TIME_PER_UNIT if start == end or not ENABLE_EDGE_BLUR: plot_span(data_ctx, start, end, h, COLOR_MAP[e["type"]]) else: plot_span(data_ctx, start + 1, end - 1, h, COLOR_MAP[e["type"]]) # plot_span(data_ctx, start, end - 1, h, COLOR_MAP[e["type"]]) c = change_color_sat( COLOR_VALUE_MAP[e["type"]], (e["start_time"] / TIME_PER_UNIT) % 1.0) plot_span(data_ctx, start, start + 1, h, to_color_fmt(c)) c = change_color_sat( COLOR_VALUE_MAP[e["type"]], (e["completion_time"] / TIME_PER_UNIT) % 1.0) plot_span(data_ctx, end - 1, end, h, to_color_fmt(c)) if ENABLE_BATCH_ID: minibatch = str(e["minibatch"]) center = (start + end) // 2 data_ctx.text(h, center, minibatch, font_scale=0.7, fill='black' if e["chunk"] == 0 else 'white') if ENABLE_BORDER: data_ctx.line(h+SPAN_HEIGHT, 0, h+SPAN_HEIGHT+BORDER_SIZE, max_len - 1) if ENABLE_BORDER: data_ctx.line(0, 0, 0, max_len - 1) data_ctx.line(0, 0, height, 0) data_ctx.line(0, max_len - 1, height, max_len - 1) dev_title_ctx = DrawCtx.from_base_ctx(ctx, 0, 0) ndev = len(events) add_devices(dev_title_ctx, ndev) if not include_info: return info_height = ndev * SPAN_HEIGHT + (ndev + 1) * BORDER_SIZE info_ctx = DrawCtx.from_base_ctx(ctx, info_height, 0) add_info(info_ctx, color_text_height, include_w, include_o) if title_text: center_title_ctx = DrawCtx.from_base_ctx(info_ctx, canvas_info.info_height, 0) add_center_title(center_title_ctx, title_text) def plot_span(ctx, start, end, h, color, ): ctx.rect(h, start, SPAN_HEIGHT, end - start, color) if ENABLE_BORDER: ctx.rect_frame(h-BORDER_SIZE, start, SPAN_HEIGHT + BORDER_SIZE, end - start) def add_devices(ctx, devs): for i in range(devs): h = i * SPAN_HEIGHT + (i + 1) * BORDER_SIZE ctx.text(h, 6 * SCALE_FACTOR, "Device {}".format(i), "left") def add_info(ctx, color_text_height, include_w=True, include_o=True): div = 4 + int(include_w) + int(include_o) f_start = ctx.width() // div b_start = ctx.width() // div * 2 w_start = ctx.width() // div * 3 o_start = ctx.width() // div * 4 block_w = 25 * SCALE_FACTOR plot_span(ctx, f_start, f_start+block_w, color_text_height + BORDER_SIZE, COLOR_MAP["F"]) plot_span(ctx, b_start, b_start+block_w, color_text_height + BORDER_SIZE, COLOR_MAP["B"]) if include_w: plot_span(ctx, w_start, w_start+block_w, color_text_height + BORDER_SIZE, COLOR_MAP["W"]) if include_o: plot_span(ctx, o_start, o_start+block_w, color_text_height + BORDER_SIZE, COLOR_MAP["Optimizer"]) ctx.text(0, 6 * SCALE_FACTOR, "Time", "left") draw_arrow(ctx, SPAN_HEIGHT // 2 + BORDER_SIZE + 1, 65 * SCALE_FACTOR, 50 * SCALE_FACTOR) block_w = 30 * SCALE_FACTOR ctx.text(color_text_height, f_start + block_w, "F", "left") ctx.text(color_text_height, b_start + block_w, "B", "left") if include_w: ctx.text(color_text_height, w_start + block_w, "W", "left") if include_o: ctx.text(color_text_height, o_start + block_w, "Optimizer Step", "left") def add_center_title(ctx: DrawCtx, text): ctx.text(CENTER_TITLE_HEIGHT / 4, ctx.width() / 2, text, "middle", 2) def draw_arrow(ctx: DrawCtx, start_y, start_x, width, thickness=2): b = thickness * (SCALE_FACTOR // 2) ctx.line(start_y, start_x, start_y, start_x + width, b) ctx.line(start_y, start_x + width, start_y - 3*b, start_x + width - 3*b) ctx.line(start_y, start_x + width, start_y + 3*b, start_x + width - 3*b) def render_manual_graph(data, longest_time, enable_batch_id = False): global ENABLE_BORDER global ENABLE_BATCH_ID ENABLE_BORDER = True ENABLE_BATCH_ID = enable_batch_id fbw_types = {"F", "B", "W", "Optimizer"} start = 0 end = None time_scale= 1024 / longest_time * TIME_PER_UNIT events = [[{ "type": e.type, "start_time": int(max(e.start_time - start, 0)) * time_scale, "completion_time": int(e.completion_time - start) * time_scale, "minibatch": e.minibatch, "chunk": e.chunk if hasattr(e, "chunk") else 0, } for e in dev_evs if e.type in fbw_types and filter_time(e, start, end) ] for dev_evs in data] # events = load_json_data("std-schedule.json") # global TIME_PER_UNIT # global ENABLE_BATCH_ID # global ENABLE_BORDER # global SCALE_FACTOR # SCALE_FACTOR = 8 # ENABLE_BATCH_ID = False # ENABLE_BORDER = False # TIME_PER_UNIT *= 7 #events = load_json_data("no-bb-schedule.json") path = os.path.join(tempfile.mkdtemp(), 'a.svg') draw_events(events, path, include_w=True, include_o=False, tail=50) return path def render_experiment_graph(): global ENABLE_BORDER global ENABLE_BATCH_ID global TIME_PER_UNIT ENABLE_BORDER = False ENABLE_BATCH_ID = False TIME_PER_UNIT = 200 // SCALE_FACTOR TIME_PER_UNIT *= 12000 start_time = 1100000000 + 10000000 # iter_time = 1600000000 iter_time = 1290000000 end_time = start_time + iter_time exp_events = load_json_data("20-09-zero/zero-events.json", start_time, end_time) # draw_events(events, "pics/experiment.svg") sched_events = load_json_data("schedule.json", time_scale=1000) draw_experiment_and_schedule(exp_events, sched_events, "pics/exp.svg") # draw_events(events, "pics/schedule.svg", include_w=True, include_o=False) # render_manual_graph() # render_experiment_graph()