Spaces:
Sleeping
Sleeping
File size: 1,371 Bytes
20bc2d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import gradio as gr
import open_clip
import torch
import requests
import numpy as np
from PIL import Image
shapes = ["leggings", "jogger",
"palazzo", "cargo",
"dresspants", "chinos"]
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionCLIP')
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionCLIP')
shapes_desc = list(map(lambda x: "a " + x + " pants shape", shapes))
text = tokenizer(shapes_desc)
with torch.no_grad(), torch.cuda.amp.autocast():
text_features = model.encode_text(text)
text_features /= text_features.norm(dim=-1, keepdim=True)
def predict(inp):
image = preprocess_val(inp).unsqueeze(0)
with torch.no_grad(), torch.cuda.amp.autocast():
image_features = model.encode_image(image)
image_features /= image_features.norm(dim=-1, keepdim=True)
text_probs = (100 * image_features @ text_features.T).softmax(dim=-1)
confidences = {shapes[i]: float(text_probs[0, i]) for i in range(6)}
return confidences
gr.Interface(fn=predict,
inputs=gr.Image(type="pil"),
outputs=gr.Label(num_top_classes=6),
examples=["imgs/cargo.jpg", "imgs/palazzo.jpg",
"imgs/leggings.jpg", "imgs/jogger.jpg",
"imgs/chinos.jpg", "imgs/dresspants.jpg"]).launch(share=True)
|