sagivp commited on
Commit
2b8e26c
·
verified ·
1 Parent(s): 46ae92f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -32
app.py CHANGED
@@ -5,46 +5,42 @@ import requests
5
  import numpy as np
6
  from PIL import Image
7
 
8
- catgs = [
9
- "Shirts",
10
- "SetShirtsPants",
11
- "SetJacketsPants",
12
- "Pants",
13
- "Jeans",
14
- "JacketsCoats",
15
- "Shoes",
16
- "Underpants",
17
- "Socks",
18
- "Hats",
19
- "Wallets",
20
- "Bags",
21
- "Scarfs",
22
- "Parasols&Umbrellas",
23
- "Necklaces",
24
- "Towels&Robes",
25
- "WallObjects",
26
- "Rugs",
27
- "Glassware",
28
- "Mugs&Cups",
29
- "OralCare"
30
- ]
31
 
32
  model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
33
  tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
34
 
35
- text = tokenizer(catgs)
36
-
37
- with torch.no_grad(), torch.cuda.amp.autocast():
38
- text_features = model.encode_text(text)
39
- text_features /= text_features.norm(dim=-1, keepdim=True)
40
-
41
-
42
  def predict(inp):
43
- image = preprocess_val(inp).unsqueeze(0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
  with torch.no_grad(), torch.cuda.amp.autocast():
46
  image_features = model.encode_image(image)
47
- image_features /= image_features.norm(dim=-1, keepdim=True)
 
 
48
  text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
49
 
50
  max_prob_idx = np.argmax(text_probs)
 
5
  import numpy as np
6
  from PIL import Image
7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
  model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
10
  tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
11
 
 
 
 
 
 
 
 
12
  def predict(inp):
13
+ catgs = [
14
+ "Shirts",
15
+ "SetShirtsPants",
16
+ "SetJacketsPants",
17
+ "Pants",
18
+ "Jeans",
19
+ "JacketsCoats",
20
+ "Shoes",
21
+ "Underpants",
22
+ "Socks",
23
+ "Hats",
24
+ "Wallets",
25
+ "Bags",
26
+ "Scarfs",
27
+ "Parasols&Umbrellas",
28
+ "Necklaces",
29
+ "Towels&Robes",
30
+ "WallObjects",
31
+ "Rugs",
32
+ "Glassware",
33
+ "Mugs&Cups",
34
+ "OralCare"
35
+ ]
36
+ text = tokenizer(catgs)
37
+ image = preprocess_val(inp).unsqueeze(0)
38
 
39
  with torch.no_grad(), torch.cuda.amp.autocast():
40
  image_features = model.encode_image(image)
41
+ image_features /= image_features.norm(dim=-1, keepdim=True)
42
+ text_features = model.encode_text(text)
43
+ text_features /= text_features.norm(dim=-1, keepdim=True)
44
  text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
45
 
46
  max_prob_idx = np.argmax(text_probs)