Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,46 +5,42 @@ import requests
|
|
5 |
import numpy as np
|
6 |
from PIL import Image
|
7 |
|
8 |
-
catgs = [
|
9 |
-
"Shirts",
|
10 |
-
"SetShirtsPants",
|
11 |
-
"SetJacketsPants",
|
12 |
-
"Pants",
|
13 |
-
"Jeans",
|
14 |
-
"JacketsCoats",
|
15 |
-
"Shoes",
|
16 |
-
"Underpants",
|
17 |
-
"Socks",
|
18 |
-
"Hats",
|
19 |
-
"Wallets",
|
20 |
-
"Bags",
|
21 |
-
"Scarfs",
|
22 |
-
"Parasols&Umbrellas",
|
23 |
-
"Necklaces",
|
24 |
-
"Towels&Robes",
|
25 |
-
"WallObjects",
|
26 |
-
"Rugs",
|
27 |
-
"Glassware",
|
28 |
-
"Mugs&Cups",
|
29 |
-
"OralCare"
|
30 |
-
]
|
31 |
|
32 |
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
|
33 |
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
|
34 |
|
35 |
-
text = tokenizer(catgs)
|
36 |
-
|
37 |
-
with torch.no_grad(), torch.cuda.amp.autocast():
|
38 |
-
text_features = model.encode_text(text)
|
39 |
-
text_features /= text_features.norm(dim=-1, keepdim=True)
|
40 |
-
|
41 |
-
|
42 |
def predict(inp):
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
with torch.no_grad(), torch.cuda.amp.autocast():
|
46 |
image_features = model.encode_image(image)
|
47 |
-
image_features /= image_features.norm(dim=-1, keepdim=True)
|
|
|
|
|
48 |
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
|
49 |
|
50 |
max_prob_idx = np.argmax(text_probs)
|
|
|
5 |
import numpy as np
|
6 |
from PIL import Image
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
|
10 |
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
def predict(inp):
|
13 |
+
catgs = [
|
14 |
+
"Shirts",
|
15 |
+
"SetShirtsPants",
|
16 |
+
"SetJacketsPants",
|
17 |
+
"Pants",
|
18 |
+
"Jeans",
|
19 |
+
"JacketsCoats",
|
20 |
+
"Shoes",
|
21 |
+
"Underpants",
|
22 |
+
"Socks",
|
23 |
+
"Hats",
|
24 |
+
"Wallets",
|
25 |
+
"Bags",
|
26 |
+
"Scarfs",
|
27 |
+
"Parasols&Umbrellas",
|
28 |
+
"Necklaces",
|
29 |
+
"Towels&Robes",
|
30 |
+
"WallObjects",
|
31 |
+
"Rugs",
|
32 |
+
"Glassware",
|
33 |
+
"Mugs&Cups",
|
34 |
+
"OralCare"
|
35 |
+
]
|
36 |
+
text = tokenizer(catgs)
|
37 |
+
image = preprocess_val(inp).unsqueeze(0)
|
38 |
|
39 |
with torch.no_grad(), torch.cuda.amp.autocast():
|
40 |
image_features = model.encode_image(image)
|
41 |
+
image_features /= image_features.norm(dim=-1, keepdim=True)
|
42 |
+
text_features = model.encode_text(text)
|
43 |
+
text_features /= text_features.norm(dim=-1, keepdim=True)
|
44 |
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
|
45 |
|
46 |
max_prob_idx = np.argmax(text_probs)
|