sagivp commited on
Commit
20bc2d5
·
verified ·
1 Parent(s): 27bd482

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -0
app.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import open_clip
3
+ import torch
4
+ import requests
5
+ import numpy as np
6
+ from PIL import Image
7
+
8
+ shapes = ["leggings", "jogger",
9
+ "palazzo", "cargo",
10
+ "dresspants", "chinos"]
11
+
12
+ model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionCLIP')
13
+ tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionCLIP')
14
+
15
+
16
+ shapes_desc = list(map(lambda x: "a " + x + " pants shape", shapes))
17
+ text = tokenizer(shapes_desc)
18
+
19
+ with torch.no_grad(), torch.cuda.amp.autocast():
20
+ text_features = model.encode_text(text)
21
+ text_features /= text_features.norm(dim=-1, keepdim=True)
22
+
23
+ def predict(inp):
24
+ image = preprocess_val(inp).unsqueeze(0)
25
+
26
+ with torch.no_grad(), torch.cuda.amp.autocast():
27
+ image_features = model.encode_image(image)
28
+ image_features /= image_features.norm(dim=-1, keepdim=True)
29
+
30
+ text_probs = (100 * image_features @ text_features.T).softmax(dim=-1)
31
+ confidences = {shapes[i]: float(text_probs[0, i]) for i in range(6)}
32
+ return confidences
33
+
34
+
35
+ gr.Interface(fn=predict,
36
+ inputs=gr.Image(type="pil"),
37
+ outputs=gr.Label(num_top_classes=6),
38
+ examples=["imgs/cargo.jpg", "imgs/palazzo.jpg",
39
+ "imgs/leggings.jpg", "imgs/jogger.jpg",
40
+ "imgs/chinos.jpg", "imgs/dresspants.jpg"]).launch(share=True)