Spaces:
Sleeping
Sleeping
import gradio as gr | |
import open_clip | |
import torch | |
import requests | |
import numpy as np | |
from PIL import Image | |
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP') | |
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP') | |
def predict(inp): | |
catgs = [ | |
"Shirts", | |
"SetShirtsPants", | |
"SetJacketsPants", | |
"Pants", | |
"Jeans", | |
"JacketsCoats", | |
"Shoes", | |
"Underpants", | |
"Socks", | |
"Hats", | |
"Wallets", | |
"Bags", | |
"Scarfs", | |
"Parasols&Umbrellas", | |
"Necklaces", | |
"Towels&Robes", | |
"WallObjects", | |
"Rugs", | |
"Glassware", | |
"Mugs&Cups", | |
"OralCare" | |
] | |
text = tokenizer(catgs) | |
image = preprocess_val(inp).unsqueeze(0) | |
with torch.no_grad(), torch.cuda.amp.autocast(): | |
image_features = model.encode_image(image) | |
image_features /= image_features.norm(dim=-1, keepdim=True) | |
text_features = model.encode_text(text) | |
text_features /= text_features.norm(dim=-1, keepdim=True) | |
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1) | |
max_prob_idx = np.argmax(text_probs) | |
pred_lbl = catgs[max_prob_idx] | |
pred_lbl_prob = text_probs[0, max_prob_idx].item() | |
mw = ["men", "women", "boy", "girl"] | |
catgs = [ | |
mw[0] + "s " + pred_lbl, | |
mw[1] + "s " + pred_lbl, | |
mw[2] + "s " + pred_lbl, | |
mw[3] + "s " + pred_lbl | |
] | |
text = tokenizer(catgs) | |
with torch.no_grad(), torch.cuda.amp.autocast(): | |
image_features = model.encode_image(image) | |
text_features = model.encode_text(text) | |
image_features /= image_features.norm(dim=-1, keepdim=True) | |
text_features /= text_features.norm(dim=-1, keepdim=True) | |
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1) | |
max_prob_idx = np.argmax(text_probs) | |
pred_lbl_f = mw[max_prob_idx] | |
pred_lbl_prob_f = text_probs[0, max_prob_idx].item() | |
tlt = f"{pred_lbl} <{100.0 * pred_lbl_prob:.1f}%> , {pred_lbl_f} <{100.0 * pred_lbl_prob_f:.1f}%>" | |
return(tlt) | |
gr.Interface(fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Label(), | |
examples=["imgs/cargo.jpg", "imgs/palazzo.jpg", | |
"imgs/leggings.jpg", "imgs/dresspants.jpg"]).launch(share=True) | |