Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,45 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
-
from transformers import AutoTokenizer,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# Load the model and tokenizer
|
6 |
model_name = "akjindal53244/Llama-3.1-Storm-8B"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
-
|
9 |
-
|
10 |
-
model=model_name,
|
11 |
torch_dtype=torch.bfloat16,
|
12 |
device_map="auto"
|
13 |
)
|
14 |
|
15 |
-
|
16 |
-
HTML_CONTENT = """
|
17 |
-
<h1>Llama-3.1-Storm-8B Text Generation</h1>
|
18 |
-
<p>Generate text using the powerful Llama-3.1-Storm-8B model. Enter a prompt and let the AI create!</p>
|
19 |
-
<div class="llama-image">
|
20 |
-
<img src="https://cdn-uploads.huggingface.co/production/uploads/64c75c1237333ccfef30a602/tmOlbERGKP7JSODa6T06J.jpeg" alt="Llama" style="width:200px; border-radius:10px;">
|
21 |
-
</div>
|
22 |
-
"""
|
23 |
-
|
24 |
def generate_text(prompt, max_length, temperature):
|
25 |
messages = [
|
26 |
{"role": "system", "content": "You are a helpful assistant."},
|
@@ -28,8 +47,10 @@ def generate_text(prompt, max_length, temperature):
|
|
28 |
]
|
29 |
formatted_prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
30 |
|
31 |
-
|
32 |
-
|
|
|
|
|
33 |
max_new_tokens=max_length,
|
34 |
do_sample=True,
|
35 |
temperature=temperature,
|
@@ -37,33 +58,25 @@ def generate_text(prompt, max_length, temperature):
|
|
37 |
top_p=0.95,
|
38 |
)
|
39 |
|
40 |
-
return outputs[0]['
|
41 |
|
42 |
-
#
|
43 |
-
|
44 |
-
|
45 |
-
[
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
gr.
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
submit_button = gr.Button("Generate")
|
57 |
-
with gr.Column(scale=2):
|
58 |
-
output = gr.Textbox(label="Generated Text", lines=10)
|
59 |
-
|
60 |
-
submit_button.click(generate_text, inputs=[prompt, max_length, temperature], outputs=[output])
|
61 |
-
|
62 |
-
# Add examples
|
63 |
-
gr.Examples(
|
64 |
-
examples=examples,
|
65 |
-
inputs=[prompt, max_length, temperature],
|
66 |
-
)
|
67 |
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import spaces
|
3 |
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
|
6 |
+
# HTML template for custom UI
|
7 |
+
HTML_TEMPLATE = """
|
8 |
+
<style>
|
9 |
+
.llama-image {
|
10 |
+
display: flex;
|
11 |
+
justify-content: center;
|
12 |
+
margin-bottom: 20px;
|
13 |
+
}
|
14 |
+
.llama-image img {
|
15 |
+
max-width: 300px;
|
16 |
+
border-radius: 10px;
|
17 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
18 |
+
}
|
19 |
+
.llama-description {
|
20 |
+
text-align: center;
|
21 |
+
font-weight: bold;
|
22 |
+
margin-top: 10px;
|
23 |
+
}
|
24 |
+
</style>
|
25 |
+
<div class="llama-image">
|
26 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/64c75c1237333ccfef30a602/tmOlbERGKP7JSODa6T06J.jpeg" alt="Llama">
|
27 |
+
<div class="llama-description">Llama-3.1-Storm-8B Model</div>
|
28 |
+
</div>
|
29 |
+
<h1>Llama-3.1-Storm-8B Text Generation</h1>
|
30 |
+
<p>Generate text using the powerful Llama-3.1-Storm-8B model. Enter a prompt and let the AI create!</p>
|
31 |
+
"""
|
32 |
|
33 |
# Load the model and tokenizer
|
34 |
model_name = "akjindal53244/Llama-3.1-Storm-8B"
|
35 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
36 |
+
model = AutoModelForCausalLM.from_pretrained(
|
37 |
+
model_name,
|
|
|
38 |
torch_dtype=torch.bfloat16,
|
39 |
device_map="auto"
|
40 |
)
|
41 |
|
42 |
+
@spaces.GPU(duration=120)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
def generate_text(prompt, max_length, temperature):
|
44 |
messages = [
|
45 |
{"role": "system", "content": "You are a helpful assistant."},
|
|
|
47 |
]
|
48 |
formatted_prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
49 |
|
50 |
+
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)
|
51 |
+
|
52 |
+
outputs = model.generate(
|
53 |
+
**inputs,
|
54 |
max_new_tokens=max_length,
|
55 |
do_sample=True,
|
56 |
temperature=temperature,
|
|
|
58 |
top_p=0.95,
|
59 |
)
|
60 |
|
61 |
+
return tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
|
62 |
|
63 |
+
# Create Gradio interface
|
64 |
+
iface = gr.Interface(
|
65 |
+
fn=generate_text,
|
66 |
+
inputs=[
|
67 |
+
gr.Textbox(lines=5, label="Prompt"),
|
68 |
+
gr.Slider(minimum=1, maximum=500, value=128, step=1, label="Max Length"),
|
69 |
+
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
|
70 |
+
],
|
71 |
+
outputs=gr.Textbox(lines=10, label="Generated Text"),
|
72 |
+
title="Llama-3.1-Storm-8B Text Generation",
|
73 |
+
description="Enter a prompt to generate text using the Llama-3.1-Storm-8B model.",
|
74 |
+
article=None,
|
75 |
+
css=".gradio-container {max-width: 800px; margin: auto;}",
|
76 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
iface.launch(
|
79 |
+
additional_inputs=[
|
80 |
+
gr.HTML(HTML_TEMPLATE)
|
81 |
+
]
|
82 |
+
)
|