FashionGen / FashionGen.py
safi842's picture
Files for the app
29cdbe6
raw
history blame
9.4 kB
import random
import streamlit as st
import torch
import PIL
import numpy as np
from PIL import Image
import imageio
from models import get_instrumented_model
from decomposition import get_or_compute
from config import Config
from skimage import img_as_ubyte
import clip
from torchvision.transforms import Resize, Normalize, Compose, CenterCrop
from torch.optim import Adam
from stqdm import stqdm
torch.set_num_threads(8)
# Speed up computation
torch.autograd.set_grad_enabled(True)
#torch.backends.cudnn.benchmark = True
# Specify model to use
config = Config(
model='StyleGAN2',
layer='style',
output_class= 'lookbook',
components=80,
use_w=True,
batch_size=5_000, # style layer quite small
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
preprocess = Compose([
Resize(224),
CenterCrop(224),
Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)),
])
@st.cache_data
def clip_optimized_latent(text, seed, iterations=25, lr=1e-2):
seed = int(seed)
text_input = clip.tokenize([text]).to(device)
# Initialize a random latent vector
latent_vector = model.sample_latent(1,seed=seed).detach()
latent_vector.requires_grad = True
latent_vector = [latent_vector]*model.get_max_latents()
params = [torch.nn.Parameter(latent_vector[i], requires_grad=True) for i in range(len(latent_vector))]
optimizer = Adam(params, lr=lr)
with torch.no_grad():
text_features = clip_model.encode_text(text_input)
#pbar = tqdm(range(iterations), dynamic_ncols=True)
for iteration in stqdm(range(iterations)):
optimizer.zero_grad()
# Generate an image from the latent vector
image = model.sample(params)
image = image.to(device)
# Preprocess the image for the CLIP model
image = preprocess(image)
#image = clip_preprocess(Image.fromarray((image_np * 255).astype(np.uint8))).unsqueeze(0).to(device)
# Extract features from the image
image_features = clip_model.encode_image(image)
# Calculate the loss and backpropagate
loss = -torch.cosine_similarity(text_features, image_features).mean()
loss.backward()
optimizer.step()
#pbar.set_description(f"Loss: {loss.item()}") # Update the progress bar to show the current loss
w = [param.detach().cpu().numpy() for param in params]
return w
def mix_w(w1, w2, content, style):
for i in range(0,5):
w2[i] = w1[i] * (1 - content) + w2[i] * content
for i in range(5, 16):
w2[i] = w1[i] * (1 - style) + w2[i] * style
return w2
def display_sample_pytorch(seed, truncation, directions, distances, scale, start, end, w=None, disp=True, save=None, noise_spec=None):
# blockPrint()
model.truncation = truncation
if w is None:
w = model.sample_latent(1, seed=seed).detach().cpu().numpy()
w = [w]*model.get_max_latents() # one per layer
else:
w_numpy = [x.detach().numpy() for x in w]
w = [np.expand_dims(x, 0) for x in w_numpy]
#w = [x.unsqueeze(0) for x in w]
for l in range(start, end):
for i in range(len(directions)):
w[l] = w[l] + directions[i] * distances[i] * scale
torch.cuda.empty_cache()
#save image and display
out = model.sample(w)
out = out.permute(0, 2, 3, 1).cpu().detach().numpy()
out = np.clip(out, 0.0, 1.0).squeeze()
final_im = Image.fromarray((out * 255).astype(np.uint8)).resize((500,500),Image.LANCZOS)
if save is not None:
if disp == False:
print(save)
final_im.save(f'out/{seed}_{save:05}.png')
if disp:
display(final_im)
return final_im
## Generate image for app
def generate_image(content, style, truncation, c0, c1, c2, c3, c4, c5, c6, start_layer, end_layer,w1,w2):
scale = 1
params = {'c0': c0,
'c1': c1,
'c2': c2,
'c3': c3,
'c4': c4,
'c5': c5,
'c6': c6}
param_indexes = {'c0': 0,
'c1': 1,
'c2': 2,
'c3': 3,
'c4': 4,
'c5': 5,
'c6': 6}
directions = []
distances = []
for k, v in params.items():
directions.append(latent_dirs[param_indexes[k]])
distances.append(v)
if w1 is not None and w2 is not None:
w1 = [torch.from_numpy(x).to(device) for x in w1]
w2 = [torch.from_numpy(x).to(device) for x in w2]
#w1 = clip_optimized_latent(text1, seed1, iters)
im1 = model.sample(w1)
im1_np = im1.permute(0, 2, 3, 1).cpu().detach().numpy()
im1_np = np.clip(im1_np, 0.0, 1.0).squeeze()
#w2 = clip_optimized_latent(text2, seed2, iters)
im2 = model.sample(w2)
im2_np = im2.permute(0, 2, 3, 1).cpu().detach().numpy()
im2_np = np.clip(im2_np, 0.0, 1.0).squeeze()
combined_im = np.concatenate([im1_np, im2_np], axis=1)
input_im = Image.fromarray((combined_im * 255).astype(np.uint8))
mixed_w = mix_w(w1, w2, content, style)
return input_im, display_sample_pytorch(seed1, truncation, directions, distances, scale, int(start_layer), int(end_layer), w=mixed_w, disp=False)
# Streamlit app title
st.title("FashionGen Demo - AI assisted fashion design")
"""This application employs the StyleGAN framework, CLIP and GANSpace exploration techniques to synthesize images of garments from textual inputs. With training based on the comprehensive LookBook dataset, it supports an efficient fashion design process by transforming text into visual concepts, showcasing the practical application of Generative Adversarial Networks (GANs) in the realm of creative design."""
@st.cache_resource
def load_model():
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the pre-trained CLIP model
clip_model, clip_preprocess = clip.load("ViT-B/32", device=device)
inst = get_instrumented_model(config.model, config.output_class,
config.layer, torch.device('cpu'), use_w=config.use_w)
return clip_model, inst
# Then, to load your models, call this function:
clip_model, inst = load_model()
model = inst.model
path_to_components = get_or_compute(config, inst)
comps = np.load(path_to_components)
lst = comps.files
latent_dirs = []
latent_stdevs = []
load_activations = False
for item in lst:
if load_activations:
if item == 'act_comp':
for i in range(comps[item].shape[0]):
latent_dirs.append(comps[item][i])
if item == 'act_stdev':
for i in range(comps[item].shape[0]):
latent_stdevs.append(comps[item][i])
else:
if item == 'lat_comp':
for i in range(comps[item].shape[0]):
latent_dirs.append(comps[item][i])
if item == 'lat_stdev':
for i in range(comps[item].shape[0]):
latent_stdevs.append(comps[item][i])
## Side bar texts
st.sidebar.title('Tuning Parameters')
st.sidebar.subheader('(CLIP + GANSpace)')
# Create UI widgets
if 'seed1' not in st.session_state and 'seed2' not in st.session_state:
st.session_state['seed1'] = random.randint(1, 1000)
st.session_state['seed2'] = random.randint(1, 1000)
seed1 = st.sidebar.number_input("Seed 1", value= st.session_state['seed1'])
seed2 = st.sidebar.number_input("Seed 2", value= st.session_state['seed2'])
text1 = st.sidebar.text_input("Text Description 1")
text2 = st.sidebar.text_input("Text Description 2")
iters = st.sidebar.number_input("Iterations for CLIP Optimization", value = 25)
submit_button = st.sidebar.button("Submit")
content = st.sidebar.slider("Structural Composition", min_value=0.0, max_value=1.0, value=0.5)
style = st.sidebar.slider("Style", min_value=0.0, max_value=1.0, value=0.5)
truncation = st.sidebar.slider("Dimensional Scaling", min_value=0.0, max_value=1.0, value=0.5)
slider_min_val = -20
slider_max_val = 20
slider_step = 1
c0 = st.sidebar.slider("Sleeve Size Scaling", min_value=slider_min_val, max_value=slider_max_val, value=0)
c1 = st.sidebar.slider("Jacket Features", min_value=slider_min_val, max_value=slider_max_val, value=0)
c2 = st.sidebar.slider("Women's Overcoat", min_value=slider_min_val, max_value=slider_max_val, value=0)
c3 = st.sidebar.slider("Coat", min_value=slider_min_val, max_value=slider_max_val, value=0)
c4 = st.sidebar.slider("Graphic Elements", min_value=slider_min_val, max_value=slider_max_val, value=0)
c5 = st.sidebar.slider("Darker Color", min_value=slider_min_val, max_value=slider_max_val, value=0)
c6 = st.sidebar.slider("Modest Neckline", min_value=slider_min_val, max_value=slider_max_val, value=0)
start_layer = st.sidebar.number_input("Start Layer", value=0)
end_layer = st.sidebar.number_input("End Layer", value=14)
if submit_button: # Execute when the submit button is pressed
w1 = clip_optimized_latent(text1, seed1, iters)
st.session_state['w1-np'] = w1
w2 = clip_optimized_latent(text2, seed2, iters)
st.session_state['w2-np'] = w2
try:
input_im, output_im = generate_image(content, style, truncation, c0, c1, c2, c3, c4, c5, c6, start_layer, end_layer,st.session_state['w1-np'],st.session_state['w2-np'])
st.image(input_im, caption="Input Image")
st.image(output_im, caption="Output Image")
except:
pass