Spaces:
Build error
Build error
File size: 73,543 Bytes
29cdbe6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 |
'''
To run dissection:
1. Load up the convolutional model you wish to dissect, and wrap it in
an InstrumentedModel; then call imodel.retain_layers([layernames,..])
to instrument the layers of interest.
2. Load the segmentation dataset using the BrodenDataset class;
use the transform_image argument to normalize images to be
suitable for the model, or the size argument to truncate the dataset.
3. Choose a directory in which to write the output, and call
dissect(outdir, model, dataset).
Example:
from dissect import InstrumentedModel, dissect
from broden import BrodenDataset
model = InstrumentedModel(load_my_model())
model.eval()
model.cuda()
model.retain_layers(['conv1', 'conv2', 'conv3', 'conv4', 'conv5'])
bds = BrodenDataset('dataset/broden1_227',
transform_image=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(IMAGE_MEAN, IMAGE_STDEV)]),
size=1000)
dissect('result/dissect', model, bds,
examples_per_unit=10)
'''
import torch, numpy, os, re, json, shutil, types, tempfile, torchvision
# import warnings
# warnings.simplefilter('error', UserWarning)
from PIL import Image
from xml.etree import ElementTree as et
from collections import OrderedDict, defaultdict
from .progress import verbose_progress, default_progress, print_progress
from .progress import desc_progress
from .runningstats import RunningQuantile, RunningTopK
from .runningstats import RunningCrossCovariance, RunningConditionalQuantile
from .sampler import FixedSubsetSampler
from .actviz import activation_visualization
from .segviz import segment_visualization, high_contrast
from .workerpool import WorkerBase, WorkerPool
from .segmenter import UnifiedParsingSegmenter
def dissect(outdir, model, dataset,
segrunner=None,
train_dataset=None,
model_segmenter=None,
quantile_threshold=0.005,
iou_threshold=0.05,
iqr_threshold=0.01,
examples_per_unit=100,
batch_size=100,
num_workers=24,
seg_batch_size=5,
make_images=True,
make_labels=True,
make_maxiou=False,
make_covariance=False,
make_report=True,
make_row_images=True,
make_single_images=False,
rank_all_labels=False,
netname=None,
meta=None,
merge=None,
settings=None,
):
'''
Runs net dissection in-memory, using pytorch, and saves visualizations
and metadata into outdir.
'''
assert not model.training, 'Run model.eval() before dissection'
if netname is None:
netname = type(model).__name__
if segrunner is None:
segrunner = ClassifierSegRunner(dataset)
if train_dataset is None:
train_dataset = dataset
make_iqr = (quantile_threshold == 'iqr')
with torch.no_grad():
device = next(model.parameters()).device
levels = None
labelnames, catnames = None, None
maxioudata, iqrdata = None, None
labeldata = None
iqrdata, cov = None, None
labelnames, catnames = segrunner.get_label_and_category_names()
label_category = [catnames.index(c) if c in catnames else 0
for l, c in labelnames]
# First, always collect qunatiles and topk information.
segloader = torch.utils.data.DataLoader(dataset,
batch_size=batch_size, num_workers=num_workers,
pin_memory=(device.type == 'cuda'))
quantiles, topk = collect_quantiles_and_topk(outdir, model,
segloader, segrunner, k=examples_per_unit)
# Thresholds can be automatically chosen by maximizing iqr
if make_iqr:
# Get thresholds based on an IQR optimization
segloader = torch.utils.data.DataLoader(train_dataset,
batch_size=1, num_workers=num_workers,
pin_memory=(device.type == 'cuda'))
iqrdata = collect_iqr(outdir, model, segloader, segrunner)
max_iqr, full_iqr_levels = iqrdata[:2]
max_iqr_agreement = iqrdata[4]
# qualified_iqr[max_iqr_quantile[layer] > 0.5] = 0
levels = {layer: full_iqr_levels[layer][
max_iqr[layer].max(0)[1],
torch.arange(max_iqr[layer].shape[1])].to(device)
for layer in full_iqr_levels}
else:
levels = {k: qc.quantiles([1.0 - quantile_threshold])[:,0]
for k, qc in quantiles.items()}
quantiledata = (topk, quantiles, levels, quantile_threshold)
if make_images:
segloader = torch.utils.data.DataLoader(dataset,
batch_size=batch_size, num_workers=num_workers,
pin_memory=(device.type == 'cuda'))
generate_images(outdir, model, dataset, topk, levels, segrunner,
row_length=examples_per_unit, batch_size=seg_batch_size,
row_images=make_row_images,
single_images=make_single_images,
num_workers=num_workers)
if make_maxiou:
assert train_dataset, "Need training dataset for maxiou."
segloader = torch.utils.data.DataLoader(train_dataset,
batch_size=1, num_workers=num_workers,
pin_memory=(device.type == 'cuda'))
maxioudata = collect_maxiou(outdir, model, segloader,
segrunner)
if make_labels:
segloader = torch.utils.data.DataLoader(dataset,
batch_size=1, num_workers=num_workers,
pin_memory=(device.type == 'cuda'))
iou_scores, iqr_scores, tcs, lcs, ccs, ics = (
collect_bincounts(outdir, model, segloader,
levels, segrunner))
labeldata = (iou_scores, iqr_scores, lcs, ccs, ics, iou_threshold,
iqr_threshold)
if make_covariance:
segloader = torch.utils.data.DataLoader(dataset,
batch_size=seg_batch_size,
num_workers=num_workers,
pin_memory=(device.type == 'cuda'))
cov = collect_covariance(outdir, model, segloader, segrunner)
if make_report:
generate_report(outdir,
quantiledata=quantiledata,
labelnames=labelnames,
catnames=catnames,
labeldata=labeldata,
maxioudata=maxioudata,
iqrdata=iqrdata,
covariancedata=cov,
rank_all_labels=rank_all_labels,
netname=netname,
meta=meta,
mergedata=merge,
settings=settings)
return quantiledata, labeldata
def generate_report(outdir, quantiledata, labelnames=None, catnames=None,
labeldata=None, maxioudata=None, iqrdata=None, covariancedata=None,
rank_all_labels=False, netname='Model', meta=None, settings=None,
mergedata=None):
'''
Creates dissection.json reports and summary bargraph.svg files in the
specified output directory, and copies a dissection.html interface
to go along with it.
'''
all_layers = []
# Current source code directory, for html to copy.
srcdir = os.path.realpath(
os.path.join(os.getcwd(), os.path.dirname(__file__)))
# Unpack arguments
topk, quantiles, levels, quantile_threshold = quantiledata
top_record = dict(
netname=netname,
meta=meta,
default_ranking='unit',
quantile_threshold=quantile_threshold)
if settings is not None:
top_record['settings'] = settings
if labeldata is not None:
iou_scores, iqr_scores, lcs, ccs, ics, iou_threshold, iqr_threshold = (
labeldata)
catorder = {'object': -7, 'scene': -6, 'part': -5,
'piece': -4,
'material': -3, 'texture': -2, 'color': -1}
for i, cat in enumerate(c for c in catnames if c not in catorder):
catorder[cat] = i
catnumber = {n: i for i, n in enumerate(catnames)}
catnumber['-'] = 0
top_record['default_ranking'] = 'label'
top_record['iou_threshold'] = iou_threshold
top_record['iqr_threshold'] = iqr_threshold
labelnumber = dict((name[0], num)
for num, name in enumerate(labelnames))
# Make a segmentation color dictionary
segcolors = {}
for i, name in enumerate(labelnames):
key = ','.join(str(s) for s in high_contrast[i % len(high_contrast)])
if key in segcolors:
segcolors[key] += '/' + name[0]
else:
segcolors[key] = name[0]
top_record['segcolors'] = segcolors
for layer in topk.keys():
units, rankings = [], []
record = dict(layer=layer, units=units, rankings=rankings)
# For every unit, we always have basic visualization information.
topa, topi = topk[layer].result()
lev = levels[layer]
for u in range(len(topa)):
units.append(dict(
unit=u,
interp=True,
level=lev[u].item(),
top=[dict(imgnum=i.item(), maxact=a.item())
for i, a in zip(topi[u], topa[u])],
))
rankings.append(dict(name="unit", score=list([
u for u in range(len(topa))])))
# TODO: consider including stats and ranking based on quantiles,
# variance, connectedness here.
# if we have labeldata, then every unit also gets a bunch of other info
if labeldata is not None:
lscore, qscore, cc, ic = [dat[layer]
for dat in [iou_scores, iqr_scores, ccs, ics]]
if iqrdata is not None:
# If we have IQR thresholds, assign labels based on that
max_iqr, max_iqr_level = iqrdata[:2]
best_label = max_iqr[layer].max(0)[1]
best_score = lscore[best_label, torch.arange(lscore.shape[1])]
best_qscore = qscore[best_label, torch.arange(lscore.shape[1])]
else:
# Otherwise, assign labels based on max iou
best_score, best_label = lscore.max(0)
best_qscore = qscore[best_label, torch.arange(qscore.shape[1])]
record['iou_threshold'] = iou_threshold,
for u, urec in enumerate(units):
score, qscore, label = (
best_score[u], best_qscore[u], best_label[u])
urec.update(dict(
iou=score.item(),
iou_iqr=qscore.item(),
lc=lcs[label].item(),
cc=cc[catnumber[labelnames[label][1]], u].item(),
ic=ic[label, u].item(),
interp=(qscore.item() > iqr_threshold and
score.item() > iou_threshold),
iou_labelnum=label.item(),
iou_label=labelnames[label.item()][0],
iou_cat=labelnames[label.item()][1],
))
if maxioudata is not None:
max_iou, max_iou_level, max_iou_quantile = maxioudata
qualified_iou = max_iou[layer].clone()
# qualified_iou[max_iou_quantile[layer] > 0.75] = 0
best_score, best_label = qualified_iou.max(0)
for u, urec in enumerate(units):
urec.update(dict(
maxiou=best_score[u].item(),
maxiou_label=labelnames[best_label[u].item()][0],
maxiou_cat=labelnames[best_label[u].item()][1],
maxiou_level=max_iou_level[layer][best_label[u], u].item(),
maxiou_quantile=max_iou_quantile[layer][
best_label[u], u].item()))
if iqrdata is not None:
[max_iqr, max_iqr_level, max_iqr_quantile,
max_iqr_iou, max_iqr_agreement] = iqrdata
qualified_iqr = max_iqr[layer].clone()
qualified_iqr[max_iqr_quantile[layer] > 0.5] = 0
best_score, best_label = qualified_iqr.max(0)
for u, urec in enumerate(units):
urec.update(dict(
iqr=best_score[u].item(),
iqr_label=labelnames[best_label[u].item()][0],
iqr_cat=labelnames[best_label[u].item()][1],
iqr_level=max_iqr_level[layer][best_label[u], u].item(),
iqr_quantile=max_iqr_quantile[layer][
best_label[u], u].item(),
iqr_iou=max_iqr_iou[layer][best_label[u], u].item()
))
if covariancedata is not None:
score = covariancedata[layer].correlation()
best_score, best_label = score.max(1)
for u, urec in enumerate(units):
urec.update(dict(
cor=best_score[u].item(),
cor_label=labelnames[best_label[u].item()][0],
cor_cat=labelnames[best_label[u].item()][1]
))
if mergedata is not None:
# Final step: if the user passed any data to merge into the
# units, merge them now. This can be used, for example, to
# indiate that a unit is not interpretable based on some
# outside analysis of unit statistics.
for lrec in mergedata.get('layers', []):
if lrec['layer'] == layer:
break
else:
lrec = None
for u, urec in enumerate(lrec.get('units', []) if lrec else []):
units[u].update(urec)
# After populating per-unit info, populate per-layer ranking info
if labeldata is not None:
# Collect all labeled units
labelunits = defaultdict(list)
all_labelunits = defaultdict(list)
for u, urec in enumerate(units):
if urec['interp']:
labelunits[urec['iou_labelnum']].append(u)
all_labelunits[urec['iou_labelnum']].append(u)
# Sort all units in order with most popular label first.
label_ordering = sorted(units,
# Sort by:
key=lambda r: (-1 if r['interp'] else 0, # interpretable
-len(labelunits[r['iou_labelnum']]), # label freq, score
-max([units[u]['iou']
for u in labelunits[r['iou_labelnum']]], default=0),
r['iou_labelnum'], # label
-r['iou'])) # unit score
# Add label and iou ranking.
rankings.append(dict(name="label", score=(numpy.argsort(list(
ur['unit'] for ur in label_ordering))).tolist()))
rankings.append(dict(name="max iou", metric="iou", score=list(
-ur['iou'] for ur in units)))
# Add ranking for top labels
# for labelnum in [n for n in sorted(
# all_labelunits.keys(), key=lambda x:
# -len(all_labelunits[x])) if len(all_labelunits[n])]:
# label = labelnames[labelnum][0]
# rankings.append(dict(name="%s-iou" % label,
# concept=label, metric='iou',
# score=(-lscore[labelnum, :]).tolist()))
# Collate labels by category then frequency.
record['labels'] = [dict(
label=labelnames[label][0],
labelnum=label,
units=labelunits[label],
cat=labelnames[label][1])
for label in (sorted(labelunits.keys(),
# Sort by:
key=lambda l: (catorder.get( # category
labelnames[l][1], 0),
-len(labelunits[l]), # label freq
-max([units[u]['iou'] for u in labelunits[l]],
default=0) # score
))) if len(labelunits[label])]
# Total number of interpretable units.
record['interpretable'] = sum(len(group['units'])
for group in record['labels'])
# Make a bargraph of labels
os.makedirs(os.path.join(outdir, safe_dir_name(layer)),
exist_ok=True)
catgroups = OrderedDict()
for _, cat in sorted([(v, k) for k, v in catorder.items()]):
catgroups[cat] = []
for rec in record['labels']:
if rec['cat'] not in catgroups:
catgroups[rec['cat']] = []
catgroups[rec['cat']].append(rec['label'])
make_svg_bargraph(
[rec['label'] for rec in record['labels']],
[len(rec['units']) for rec in record['labels']],
[(cat, len(group)) for cat, group in catgroups.items()],
filename=os.path.join(outdir, safe_dir_name(layer),
'bargraph.svg'))
# Only show the bargraph if it is non-empty.
if len(record['labels']):
record['bargraph'] = 'bargraph.svg'
if maxioudata is not None:
rankings.append(dict(name="max maxiou", metric="maxiou", score=list(
-ur['maxiou'] for ur in units)))
if iqrdata is not None:
rankings.append(dict(name="max iqr", metric="iqr", score=list(
-ur['iqr'] for ur in units)))
if covariancedata is not None:
rankings.append(dict(name="max cor", metric="cor", score=list(
-ur['cor'] for ur in units)))
all_layers.append(record)
# Now add the same rankings to every layer...
all_labels = None
if rank_all_labels:
all_labels = [name for name, cat in labelnames]
if labeldata is not None:
# Count layers+quadrants with a given label, and sort by freq
counted_labels = defaultdict(int)
for label in [
re.sub(r'-(?:t|b|l|r|tl|tr|bl|br)$', '', unitrec['iou_label'])
for record in all_layers for unitrec in record['units']]:
counted_labels[label] += 1
if all_labels is None:
all_labels = [label for count, label in sorted((-v, k)
for k, v in counted_labels.items())]
for record in all_layers:
layer = record['layer']
for label in all_labels:
labelnum = labelnumber[label]
record['rankings'].append(dict(name="%s-iou" % label,
concept=label, metric='iou',
score=(-iou_scores[layer][labelnum, :]).tolist()))
if maxioudata is not None:
if all_labels is None:
counted_labels = defaultdict(int)
for label in [
re.sub(r'-(?:t|b|l|r|tl|tr|bl|br)$', '',
unitrec['maxiou_label'])
for record in all_layers for unitrec in record['units']]:
counted_labels[label] += 1
all_labels = [label for count, label in sorted((-v, k)
for k, v in counted_labels.items())]
qualified_iou = max_iou[layer].clone()
qualified_iou[max_iou_quantile[layer] > 0.5] = 0
for record in all_layers:
layer = record['layer']
for label in all_labels:
labelnum = labelnumber[label]
record['rankings'].append(dict(name="%s-maxiou" % label,
concept=label, metric='maxiou',
score=(-qualified_iou[labelnum, :]).tolist()))
if iqrdata is not None:
if all_labels is None:
counted_labels = defaultdict(int)
for label in [
re.sub(r'-(?:t|b|l|r|tl|tr|bl|br)$', '',
unitrec['iqr_label'])
for record in all_layers for unitrec in record['units']]:
counted_labels[label] += 1
all_labels = [label for count, label in sorted((-v, k)
for k, v in counted_labels.items())]
# qualified_iqr[max_iqr_quantile[layer] > 0.5] = 0
for record in all_layers:
layer = record['layer']
qualified_iqr = max_iqr[layer].clone()
for label in all_labels:
labelnum = labelnumber[label]
record['rankings'].append(dict(name="%s-iqr" % label,
concept=label, metric='iqr',
score=(-qualified_iqr[labelnum, :]).tolist()))
if covariancedata is not None:
if all_labels is None:
counted_labels = defaultdict(int)
for label in [
re.sub(r'-(?:t|b|l|r|tl|tr|bl|br)$', '',
unitrec['cor_label'])
for record in all_layers for unitrec in record['units']]:
counted_labels[label] += 1
all_labels = [label for count, label in sorted((-v, k)
for k, v in counted_labels.items())]
for record in all_layers:
layer = record['layer']
score = covariancedata[layer].correlation()
for label in all_labels:
labelnum = labelnumber[label]
record['rankings'].append(dict(name="%s-cor" % label,
concept=label, metric='cor',
score=(-score[:, labelnum]).tolist()))
for record in all_layers:
layer = record['layer']
# Dump per-layer json inside per-layer directory
record['dirname'] = '.'
with open(os.path.join(outdir, safe_dir_name(layer), 'dissect.json'),
'w') as jsonfile:
top_record['layers'] = [record]
json.dump(top_record, jsonfile, indent=1)
# Copy the per-layer html
shutil.copy(os.path.join(srcdir, 'dissect.html'),
os.path.join(outdir, safe_dir_name(layer), 'dissect.html'))
record['dirname'] = safe_dir_name(layer)
# Dump all-layer json in parent directory
with open(os.path.join(outdir, 'dissect.json'), 'w') as jsonfile:
top_record['layers'] = all_layers
json.dump(top_record, jsonfile, indent=1)
# Copy the all-layer html
shutil.copy(os.path.join(srcdir, 'dissect.html'),
os.path.join(outdir, 'dissect.html'))
shutil.copy(os.path.join(srcdir, 'edit.html'),
os.path.join(outdir, 'edit.html'))
def generate_images(outdir, model, dataset, topk, levels,
segrunner, row_length=None, gap_pixels=5,
row_images=True, single_images=False, prefix='',
batch_size=100, num_workers=24):
'''
Creates an image strip file for every unit of every retained layer
of the model, in the format [outdir]/[layername]/[unitnum]-top.jpg.
Assumes that the indexes of topk refer to the indexes of dataset.
Limits each strip to the top row_length images.
'''
progress = default_progress()
needed_images = {}
if row_images is False:
row_length = 1
# Pass 1: needed_images lists all images that are topk for some unit.
for layer in topk:
topresult = topk[layer].result()[1].cpu()
for unit, row in enumerate(topresult):
for rank, imgnum in enumerate(row[:row_length]):
imgnum = imgnum.item()
if imgnum not in needed_images:
needed_images[imgnum] = []
needed_images[imgnum].append((layer, unit, rank))
levels = {k: v.cpu().numpy() for k, v in levels.items()}
row_length = len(row[:row_length])
needed_sample = FixedSubsetSampler(sorted(needed_images.keys()))
device = next(model.parameters()).device
segloader = torch.utils.data.DataLoader(dataset,
batch_size=batch_size, num_workers=num_workers,
pin_memory=(device.type == 'cuda'),
sampler=needed_sample)
vizgrid, maskgrid, origrid, seggrid = [{} for _ in range(4)]
# Pass 2: populate vizgrid with visualizations of top units.
pool = None
for i, batch in enumerate(
progress(segloader, desc='Making images')):
# Reverse transformation to get the image in byte form.
seg, _, byte_im, _ = segrunner.run_and_segment_batch(batch, model,
want_rgb=True)
torch_features = model.retained_features()
scale_offset = getattr(model, 'scale_offset', None)
if pool is None:
# Distribute the work across processes: create shared mmaps.
for layer, tf in torch_features.items():
[vizgrid[layer], maskgrid[layer], origrid[layer],
seggrid[layer]] = [
create_temp_mmap_grid((tf.shape[1],
byte_im.shape[1], row_length,
byte_im.shape[2] + gap_pixels, depth),
dtype='uint8',
fill=255)
for depth in [3, 4, 3, 3]]
# Pass those mmaps to worker processes.
pool = WorkerPool(worker=VisualizeImageWorker,
memmap_grid_info=[
{layer: (g.filename, g.shape, g.dtype)
for layer, g in grid.items()}
for grid in [vizgrid, maskgrid, origrid, seggrid]])
byte_im = byte_im.cpu().numpy()
numpy_seg = seg.cpu().numpy()
features = {}
for index in range(len(byte_im)):
imgnum = needed_sample.samples[index + i*segloader.batch_size]
for layer, unit, rank in needed_images[imgnum]:
if layer not in features:
features[layer] = torch_features[layer].cpu().numpy()
pool.add(layer, unit, rank,
byte_im[index],
features[layer][index, unit],
levels[layer][unit],
scale_offset[layer] if scale_offset else None,
numpy_seg[index])
pool.join()
# Pass 3: save image strips as [outdir]/[layer]/[unitnum]-[top/orig].jpg
pool = WorkerPool(worker=SaveImageWorker)
for layer, vg in progress(vizgrid.items(), desc='Saving images'):
os.makedirs(os.path.join(outdir, safe_dir_name(layer),
prefix + 'image'), exist_ok=True)
if single_images:
os.makedirs(os.path.join(outdir, safe_dir_name(layer),
prefix + 's-image'), exist_ok=True)
og, sg, mg = origrid[layer], seggrid[layer], maskgrid[layer]
for unit in progress(range(len(vg)), desc='Units'):
for suffix, grid in [('top.jpg', vg), ('orig.jpg', og),
('seg.png', sg), ('mask.png', mg)]:
strip = grid[unit].reshape(
(grid.shape[1], grid.shape[2] * grid.shape[3],
grid.shape[4]))
if row_images:
filename = os.path.join(outdir, safe_dir_name(layer),
prefix + 'image', '%d-%s' % (unit, suffix))
pool.add(strip[:,:-gap_pixels,:].copy(), filename)
# Image.fromarray(strip[:,:-gap_pixels,:]).save(filename,
# optimize=True, quality=80)
if single_images:
single_filename = os.path.join(outdir, safe_dir_name(layer),
prefix + 's-image', '%d-%s' % (unit, suffix))
pool.add(strip[:,:strip.shape[1] // row_length
- gap_pixels,:].copy(), single_filename)
# Image.fromarray(strip[:,:strip.shape[1] // row_length
# - gap_pixels,:]).save(single_filename,
# optimize=True, quality=80)
pool.join()
# Delete the shared memory map files
clear_global_shared_files([g.filename
for grid in [vizgrid, maskgrid, origrid, seggrid]
for g in grid.values()])
global_shared_files = {}
def create_temp_mmap_grid(shape, dtype, fill):
dtype = numpy.dtype(dtype)
filename = os.path.join(tempfile.mkdtemp(), 'temp-%s-%s.mmap' %
('x'.join('%d' % s for s in shape), dtype.name))
fid = open(filename, mode='w+b')
original = numpy.memmap(fid, dtype=dtype, mode='w+', shape=shape)
original.fid = fid
original[...] = fill
global_shared_files[filename] = original
return original
def shared_temp_mmap_grid(filename, shape, dtype):
if filename not in global_shared_files:
global_shared_files[filename] = numpy.memmap(
filename, dtype=dtype, mode='r+', shape=shape)
return global_shared_files[filename]
def clear_global_shared_files(filenames):
for fn in filenames:
if fn in global_shared_files:
del global_shared_files[fn]
try:
os.unlink(fn)
except OSError:
pass
class VisualizeImageWorker(WorkerBase):
def setup(self, memmap_grid_info):
self.vizgrid, self.maskgrid, self.origrid, self.seggrid = [
{layer: shared_temp_mmap_grid(*info)
for layer, info in grid.items()}
for grid in memmap_grid_info]
def work(self, layer, unit, rank,
byte_im, acts, level, scale_offset, seg):
self.origrid[layer][unit,:,rank,:byte_im.shape[0],:] = byte_im
[self.vizgrid[layer][unit,:,rank,:byte_im.shape[0],:],
self.maskgrid[layer][unit,:,rank,:byte_im.shape[0],:]] = (
activation_visualization(
byte_im,
acts,
level,
scale_offset=scale_offset,
return_mask=True))
self.seggrid[layer][unit,:,rank,:byte_im.shape[0],:] = (
segment_visualization(seg, byte_im.shape[0:2]))
class SaveImageWorker(WorkerBase):
def work(self, data, filename):
Image.fromarray(data).save(filename, optimize=True, quality=80)
def score_tally_stats(label_category, tc, truth, cc, ic):
pred = cc[label_category]
total = tc[label_category][:, None]
truth = truth[:, None]
epsilon = 1e-20 # avoid division-by-zero
union = pred + truth - ic
iou = ic.double() / (union.double() + epsilon)
arr = torch.empty(size=(2, 2) + ic.shape, dtype=ic.dtype, device=ic.device)
arr[0, 0] = ic
arr[0, 1] = pred - ic
arr[1, 0] = truth - ic
arr[1, 1] = total - union
arr = arr.double() / total.double()
mi = mutual_information(arr)
je = joint_entropy(arr)
iqr = mi / je
iqr[torch.isnan(iqr)] = 0 # Zero out any 0/0
return iou, iqr
def collect_quantiles_and_topk(outdir, model, segloader,
segrunner, k=100, resolution=1024):
'''
Collects (estimated) quantile information and (exact) sorted top-K lists
for every channel in the retained layers of the model. Returns
a map of quantiles (one RunningQuantile for each layer) along with
a map of topk (one RunningTopK for each layer).
'''
device = next(model.parameters()).device
features = model.retained_features()
cached_quantiles = {
layer: load_quantile_if_present(os.path.join(outdir,
safe_dir_name(layer)), 'quantiles.npz',
device=torch.device('cpu'))
for layer in features }
cached_topks = {
layer: load_topk_if_present(os.path.join(outdir,
safe_dir_name(layer)), 'topk.npz',
device=torch.device('cpu'))
for layer in features }
if (all(value is not None for value in cached_quantiles.values()) and
all(value is not None for value in cached_topks.values())):
return cached_quantiles, cached_topks
layer_batch_size = 8
all_layers = list(features.keys())
layer_batches = [all_layers[i:i+layer_batch_size]
for i in range(0, len(all_layers), layer_batch_size)]
quantiles, topks = {}, {}
progress = default_progress()
for layer_batch in layer_batches:
for i, batch in enumerate(progress(segloader, desc='Quantiles')):
# We don't actually care about the model output.
model(batch[0].to(device))
features = model.retained_features()
# We care about the retained values
for key in layer_batch:
value = features[key]
if topks.get(key, None) is None:
topks[key] = RunningTopK(k)
if quantiles.get(key, None) is None:
quantiles[key] = RunningQuantile(resolution=resolution)
topvalue = value
if len(value.shape) > 2:
topvalue, _ = value.view(*(value.shape[:2] + (-1,))).max(2)
# Put the channel index last.
value = value.permute(
(0,) + tuple(range(2, len(value.shape))) + (1,)
).contiguous().view(-1, value.shape[1])
quantiles[key].add(value)
topks[key].add(topvalue)
# Save GPU memory
for key in layer_batch:
quantiles[key].to_(torch.device('cpu'))
topks[key].to_(torch.device('cpu'))
for layer in quantiles:
save_state_dict(quantiles[layer],
os.path.join(outdir, safe_dir_name(layer), 'quantiles.npz'))
save_state_dict(topks[layer],
os.path.join(outdir, safe_dir_name(layer), 'topk.npz'))
return quantiles, topks
def collect_bincounts(outdir, model, segloader, levels, segrunner):
'''
Returns label_counts, category_activation_counts, and intersection_counts,
across the data set, counting the pixels of intersection between upsampled,
thresholded model featuremaps, with segmentation classes in the segloader.
label_counts (independent of model): pixels across the data set that
are labeled with the given label.
category_activation_counts (one per layer): for each feature channel,
pixels across the dataset where the channel exceeds the level
threshold. There is one count per category: activations only
contribute to the categories for which any category labels are
present on the images.
intersection_counts (one per layer): for each feature channel and
label, pixels across the dataset where the channel exceeds
the level, and the labeled segmentation class is also present.
This is a performance-sensitive function. Best performance is
achieved with a counting scheme which assumes a segloader with
batch_size 1.
'''
# Load cached data if present
(iou_scores, iqr_scores,
total_counts, label_counts, category_activation_counts,
intersection_counts) = {}, {}, None, None, {}, {}
found_all = True
for layer in model.retained_features():
filename = os.path.join(outdir, safe_dir_name(layer), 'bincounts.npz')
if os.path.isfile(filename):
data = numpy.load(filename)
iou_scores[layer] = torch.from_numpy(data['iou_scores'])
iqr_scores[layer] = torch.from_numpy(data['iqr_scores'])
total_counts = torch.from_numpy(data['total_counts'])
label_counts = torch.from_numpy(data['label_counts'])
category_activation_counts[layer] = torch.from_numpy(
data['category_activation_counts'])
intersection_counts[layer] = torch.from_numpy(
data['intersection_counts'])
else:
found_all = False
if found_all:
return (iou_scores, iqr_scores,
total_counts, label_counts, category_activation_counts,
intersection_counts)
device = next(model.parameters()).device
labelcat, categories = segrunner.get_label_and_category_names()
label_category = [categories.index(c) if c in categories else 0
for l, c in labelcat]
num_labels, num_categories = (len(n) for n in [labelcat, categories])
# One-hot vector of category for each label
labelcat = torch.zeros(num_labels, num_categories,
dtype=torch.long, device=device)
labelcat.scatter_(1, torch.from_numpy(numpy.array(label_category,
dtype='int64')).to(device)[:,None], 1)
# Running bincounts
# activation_counts = {}
assert segloader.batch_size == 1 # category_activation_counts needs this.
category_activation_counts = {}
intersection_counts = {}
label_counts = torch.zeros(num_labels, dtype=torch.long, device=device)
total_counts = torch.zeros(num_categories, dtype=torch.long, device=device)
progress = default_progress()
scale_offset_map = getattr(model, 'scale_offset', None)
upsample_grids = {}
# total_batch_categories = torch.zeros(
# labelcat.shape[1], dtype=torch.long, device=device)
for i, batch in enumerate(progress(segloader, desc='Bincounts')):
seg, batch_label_counts, _, imshape = segrunner.run_and_segment_batch(
batch, model, want_bincount=True, want_rgb=True)
bc = batch_label_counts.cpu()
batch_label_counts = batch_label_counts.to(device)
seg = seg.to(device)
features = model.retained_features()
# Accumulate bincounts and identify nonzeros
label_counts += batch_label_counts[0]
batch_labels = bc[0].nonzero()[:,0]
batch_categories = labelcat[batch_labels].max(0)[0]
total_counts += batch_categories * (
seg.shape[0] * seg.shape[2] * seg.shape[3])
for key, value in features.items():
if key not in upsample_grids:
upsample_grids[key] = upsample_grid(value.shape[2:],
seg.shape[2:], imshape,
scale_offset=scale_offset_map.get(key, None)
if scale_offset_map is not None else None,
dtype=value.dtype, device=value.device)
upsampled = torch.nn.functional.grid_sample(value,
upsample_grids[key], padding_mode='border')
amask = (upsampled > levels[key][None,:,None,None].to(
upsampled.device))
ac = amask.int().view(amask.shape[1], -1).sum(1)
# if key not in activation_counts:
# activation_counts[key] = ac
# else:
# activation_counts[key] += ac
# The fastest approach: sum over each label separately!
for label in batch_labels.tolist():
if label == 0:
continue # ignore the background label
imask = amask * ((seg == label).max(dim=1, keepdim=True)[0])
ic = imask.int().view(imask.shape[1], -1).sum(1)
if key not in intersection_counts:
intersection_counts[key] = torch.zeros(num_labels,
amask.shape[1], dtype=torch.long, device=device)
intersection_counts[key][label] += ic
# Count activations within images that have category labels.
# Note: This only makes sense with batch-size one
# total_batch_categories += batch_categories
cc = batch_categories[:,None] * ac[None,:]
if key not in category_activation_counts:
category_activation_counts[key] = cc
else:
category_activation_counts[key] += cc
iou_scores = {}
iqr_scores = {}
for k in intersection_counts:
iou_scores[k], iqr_scores[k] = score_tally_stats(
label_category, total_counts, label_counts,
category_activation_counts[k], intersection_counts[k])
for k in intersection_counts:
numpy.savez(os.path.join(outdir, safe_dir_name(k), 'bincounts.npz'),
iou_scores=iou_scores[k].cpu().numpy(),
iqr_scores=iqr_scores[k].cpu().numpy(),
total_counts=total_counts.cpu().numpy(),
label_counts=label_counts.cpu().numpy(),
category_activation_counts=category_activation_counts[k]
.cpu().numpy(),
intersection_counts=intersection_counts[k].cpu().numpy(),
levels=levels[k].cpu().numpy())
return (iou_scores, iqr_scores,
total_counts, label_counts, category_activation_counts,
intersection_counts)
def collect_cond_quantiles(outdir, model, segloader, segrunner):
'''
Returns maxiou and maxiou_level across the data set, one per layer.
This is a performance-sensitive function. Best performance is
achieved with a counting scheme which assumes a segloader with
batch_size 1.
'''
device = next(model.parameters()).device
cached_cond_quantiles = {
layer: load_conditional_quantile_if_present(os.path.join(outdir,
safe_dir_name(layer)), 'cond_quantiles.npz') # on cpu
for layer in model.retained_features() }
label_fracs = load_npy_if_present(outdir, 'label_fracs.npy', 'cpu')
if label_fracs is not None and all(
value is not None for value in cached_cond_quantiles.values()):
return cached_cond_quantiles, label_fracs
labelcat, categories = segrunner.get_label_and_category_names()
label_category = [categories.index(c) if c in categories else 0
for l, c in labelcat]
num_labels, num_categories = (len(n) for n in [labelcat, categories])
# One-hot vector of category for each label
labelcat = torch.zeros(num_labels, num_categories,
dtype=torch.long, device=device)
labelcat.scatter_(1, torch.from_numpy(numpy.array(label_category,
dtype='int64')).to(device)[:,None], 1)
# Running maxiou
assert segloader.batch_size == 1 # category_activation_counts needs this.
conditional_quantiles = {}
label_counts = torch.zeros(num_labels, dtype=torch.long, device=device)
pixel_count = 0
progress = default_progress()
scale_offset_map = getattr(model, 'scale_offset', None)
upsample_grids = {}
common_conditions = set()
if label_fracs is None or label_fracs is 0:
for i, batch in enumerate(progress(segloader, desc='label fracs')):
seg, batch_label_counts, im, _ = segrunner.run_and_segment_batch(
batch, model, want_bincount=True, want_rgb=True)
batch_label_counts = batch_label_counts.to(device)
features = model.retained_features()
# Accumulate bincounts and identify nonzeros
label_counts += batch_label_counts[0]
pixel_count += seg.shape[2] * seg.shape[3]
label_fracs = (label_counts.cpu().float() / pixel_count)[:, None, None]
numpy.save(os.path.join(outdir, 'label_fracs.npy'), label_fracs)
skip_threshold = 1e-4
skip_labels = set(i.item()
for i in (label_fracs.view(-1) < skip_threshold).nonzero().view(-1))
for layer in progress(model.retained_features().keys(), desc='CQ layers'):
if cached_cond_quantiles.get(layer, None) is not None:
conditional_quantiles[layer] = cached_cond_quantiles[layer]
continue
for i, batch in enumerate(progress(segloader, desc='Condquant')):
seg, batch_label_counts, _, imshape = (
segrunner.run_and_segment_batch(
batch, model, want_bincount=True, want_rgb=True))
bc = batch_label_counts.cpu()
batch_label_counts = batch_label_counts.to(device)
features = model.retained_features()
# Accumulate bincounts and identify nonzeros
label_counts += batch_label_counts[0]
pixel_count += seg.shape[2] * seg.shape[3]
batch_labels = bc[0].nonzero()[:,0]
batch_categories = labelcat[batch_labels].max(0)[0]
cpu_seg = None
value = features[layer]
if layer not in upsample_grids:
upsample_grids[layer] = upsample_grid(value.shape[2:],
seg.shape[2:], imshape,
scale_offset=scale_offset_map.get(layer, None)
if scale_offset_map is not None else None,
dtype=value.dtype, device=value.device)
if layer not in conditional_quantiles:
conditional_quantiles[layer] = RunningConditionalQuantile(
resolution=2048)
upsampled = torch.nn.functional.grid_sample(value,
upsample_grids[layer], padding_mode='border').view(
value.shape[1], -1)
conditional_quantiles[layer].add(('all',), upsampled.t())
cpu_upsampled = None
for label in batch_labels.tolist():
if label in skip_labels:
continue
label_key = ('label', label)
if label_key in common_conditions:
imask = (seg == label).max(dim=1)[0].view(-1)
intersected = upsampled[:, imask]
conditional_quantiles[layer].add(('label', label),
intersected.t())
else:
if cpu_seg is None:
cpu_seg = seg.cpu()
if cpu_upsampled is None:
cpu_upsampled = upsampled.cpu()
imask = (cpu_seg == label).max(dim=1)[0].view(-1)
intersected = cpu_upsampled[:, imask]
conditional_quantiles[layer].add(('label', label),
intersected.t())
if num_categories > 1:
for cat in batch_categories.nonzero()[:,0]:
conditional_quantiles[layer].add(('cat', cat.item()),
upsampled.t())
# Move the most common conditions to the GPU.
if i and not i & (i - 1): # if i is a power of 2:
cq = conditional_quantiles[layer]
common_conditions = set(cq.most_common_conditions(64))
cq.to_('cpu', [k for k in cq.running_quantiles.keys()
if k not in common_conditions])
# When a layer is done, get it off the GPU
conditional_quantiles[layer].to_('cpu')
label_fracs = (label_counts.cpu().float() / pixel_count)[:, None, None]
for cq in conditional_quantiles.values():
cq.to_('cpu')
for layer in conditional_quantiles:
save_state_dict(conditional_quantiles[layer],
os.path.join(outdir, safe_dir_name(layer), 'cond_quantiles.npz'))
numpy.save(os.path.join(outdir, 'label_fracs.npy'), label_fracs)
return conditional_quantiles, label_fracs
def collect_maxiou(outdir, model, segloader, segrunner):
'''
Returns maxiou and maxiou_level across the data set, one per layer.
This is a performance-sensitive function. Best performance is
achieved with a counting scheme which assumes a segloader with
batch_size 1.
'''
device = next(model.parameters()).device
conditional_quantiles, label_fracs = collect_cond_quantiles(
outdir, model, segloader, segrunner)
labelcat, categories = segrunner.get_label_and_category_names()
label_category = [categories.index(c) if c in categories else 0
for l, c in labelcat]
num_labels, num_categories = (len(n) for n in [labelcat, categories])
label_list = [('label', i) for i in range(num_labels)]
category_list = [('all',)] if num_categories <= 1 else (
[('cat', i) for i in range(num_categories)])
max_iou, max_iou_level, max_iou_quantile = {}, {}, {}
fracs = torch.logspace(-3, 0, 100)
progress = default_progress()
for layer, cq in progress(conditional_quantiles.items(), desc='Maxiou'):
levels = cq.conditional(('all',)).quantiles(1 - fracs)
denoms = 1 - cq.collected_normalize(category_list, levels)
isects = (1 - cq.collected_normalize(label_list, levels)) * label_fracs
unions = label_fracs + denoms[label_category, :, :] - isects
iou = isects / unions
# TODO: erase any for which threshold is bad
max_iou[layer], level_bucket = iou.max(2)
max_iou_level[layer] = levels[
torch.arange(levels.shape[0])[None,:], level_bucket]
max_iou_quantile[layer] = fracs[level_bucket]
for layer in model.retained_features():
numpy.savez(os.path.join(outdir, safe_dir_name(layer), 'max_iou.npz'),
max_iou=max_iou[layer].cpu().numpy(),
max_iou_level=max_iou_level[layer].cpu().numpy(),
max_iou_quantile=max_iou_quantile[layer].cpu().numpy())
return (max_iou, max_iou_level, max_iou_quantile)
def collect_iqr(outdir, model, segloader, segrunner):
'''
Returns iqr and iqr_level.
This is a performance-sensitive function. Best performance is
achieved with a counting scheme which assumes a segloader with
batch_size 1.
'''
max_iqr, max_iqr_level, max_iqr_quantile, max_iqr_iou = {}, {}, {}, {}
max_iqr_agreement = {}
found_all = True
for layer in model.retained_features():
filename = os.path.join(outdir, safe_dir_name(layer), 'iqr.npz')
if os.path.isfile(filename):
data = numpy.load(filename)
max_iqr[layer] = torch.from_numpy(data['max_iqr'])
max_iqr_level[layer] = torch.from_numpy(data['max_iqr_level'])
max_iqr_quantile[layer] = torch.from_numpy(data['max_iqr_quantile'])
max_iqr_iou[layer] = torch.from_numpy(data['max_iqr_iou'])
max_iqr_agreement[layer] = torch.from_numpy(
data['max_iqr_agreement'])
else:
found_all = False
if found_all:
return (max_iqr, max_iqr_level, max_iqr_quantile, max_iqr_iou,
max_iqr_agreement)
device = next(model.parameters()).device
conditional_quantiles, label_fracs = collect_cond_quantiles(
outdir, model, segloader, segrunner)
labelcat, categories = segrunner.get_label_and_category_names()
label_category = [categories.index(c) if c in categories else 0
for l, c in labelcat]
num_labels, num_categories = (len(n) for n in [labelcat, categories])
label_list = [('label', i) for i in range(num_labels)]
category_list = [('all',)] if num_categories <= 1 else (
[('cat', i) for i in range(num_categories)])
full_mi, full_je, full_iqr = {}, {}, {}
fracs = torch.logspace(-3, 0, 100)
progress = default_progress()
for layer, cq in progress(conditional_quantiles.items(), desc='IQR'):
levels = cq.conditional(('all',)).quantiles(1 - fracs)
truth = label_fracs.to(device)
preds = (1 - cq.collected_normalize(category_list, levels)
)[label_category, :, :].to(device)
cond_isects = 1 - cq.collected_normalize(label_list, levels).to(device)
isects = cond_isects * truth
unions = truth + preds - isects
arr = torch.empty(size=(2, 2) + isects.shape, dtype=isects.dtype,
device=device)
arr[0, 0] = isects
arr[0, 1] = preds - isects
arr[1, 0] = truth - isects
arr[1, 1] = 1 - unions
arr.clamp_(0, 1)
mi = mutual_information(arr)
mi[:,:,-1] = 0 # at the 1.0 quantile should be no MI.
# Don't trust mi when less than label_frac is less than 1e-3,
# because our samples are too small.
mi[label_fracs.view(-1) < 1e-3, :, :] = 0
je = joint_entropy(arr)
iqr = mi / je
iqr[torch.isnan(iqr)] = 0 # Zero out any 0/0
full_mi[layer] = mi.cpu()
full_je[layer] = je.cpu()
full_iqr[layer] = iqr.cpu()
del mi, je
agreement = isects + arr[1, 1]
# When optimizing, maximize only over those pairs where the
# unit is positively correlated with the label, and where the
# threshold level is positive
positive_iqr = iqr
positive_iqr[agreement <= 0.8] = 0
positive_iqr[(levels <= 0.0)[None, :, :].expand(positive_iqr.shape)] = 0
# TODO: erase any for which threshold is bad
maxiqr, level_bucket = positive_iqr.max(2)
max_iqr[layer] = maxiqr.cpu()
max_iqr_level[layer] = levels.to(device)[
torch.arange(levels.shape[0])[None,:], level_bucket].cpu()
max_iqr_quantile[layer] = fracs.to(device)[level_bucket].cpu()
max_iqr_agreement[layer] = agreement[
torch.arange(agreement.shape[0])[:, None],
torch.arange(agreement.shape[1])[None, :],
level_bucket].cpu()
# Compute the iou that goes with each maximized iqr
matching_iou = (isects[
torch.arange(isects.shape[0])[:, None],
torch.arange(isects.shape[1])[None, :],
level_bucket] /
unions[
torch.arange(unions.shape[0])[:, None],
torch.arange(unions.shape[1])[None, :],
level_bucket])
matching_iou[torch.isnan(matching_iou)] = 0
max_iqr_iou[layer] = matching_iou.cpu()
for layer in model.retained_features():
numpy.savez(os.path.join(outdir, safe_dir_name(layer), 'iqr.npz'),
max_iqr=max_iqr[layer].cpu().numpy(),
max_iqr_level=max_iqr_level[layer].cpu().numpy(),
max_iqr_quantile=max_iqr_quantile[layer].cpu().numpy(),
max_iqr_iou=max_iqr_iou[layer].cpu().numpy(),
max_iqr_agreement=max_iqr_agreement[layer].cpu().numpy(),
full_mi=full_mi[layer].cpu().numpy(),
full_je=full_je[layer].cpu().numpy(),
full_iqr=full_iqr[layer].cpu().numpy())
return (max_iqr, max_iqr_level, max_iqr_quantile, max_iqr_iou,
max_iqr_agreement)
def mutual_information(arr):
total = 0
for j in range(arr.shape[0]):
for k in range(arr.shape[1]):
joint = arr[j,k]
ind = arr[j,:].sum(dim=0) * arr[:,k].sum(dim=0)
term = joint * (joint / ind).log()
term[torch.isnan(term)] = 0
total += term
return total.clamp_(0)
def joint_entropy(arr):
total = 0
for j in range(arr.shape[0]):
for k in range(arr.shape[1]):
joint = arr[j,k]
term = joint * joint.log()
term[torch.isnan(term)] = 0
total += term
return (-total).clamp_(0)
def information_quality_ratio(arr):
iqr = mutual_information(arr) / joint_entropy(arr)
iqr[torch.isnan(iqr)] = 0
return iqr
def collect_covariance(outdir, model, segloader, segrunner):
'''
Returns label_mean, label_variance, unit_mean, unit_variance,
and cross_covariance across the data set.
label_mean, label_variance (independent of model):
treating the label as a one-hot, each label's mean and variance.
unit_mean, unit_variance (one per layer): for each feature channel,
the mean and variance of the activations in that channel.
cross_covariance (one per layer): the cross covariance between the
labels and the units in the layer.
'''
device = next(model.parameters()).device
cached_covariance = {
layer: load_covariance_if_present(os.path.join(outdir,
safe_dir_name(layer)), 'covariance.npz', device=device)
for layer in model.retained_features() }
if all(value is not None for value in cached_covariance.values()):
return cached_covariance
labelcat, categories = segrunner.get_label_and_category_names()
label_category = [categories.index(c) if c in categories else 0
for l, c in labelcat]
num_labels, num_categories = (len(n) for n in [labelcat, categories])
# Running covariance
cov = {}
progress = default_progress()
scale_offset_map = getattr(model, 'scale_offset', None)
upsample_grids = {}
for i, batch in enumerate(progress(segloader, desc='Covariance')):
seg, _, _, imshape = segrunner.run_and_segment_batch(batch, model,
want_rgb=True)
features = model.retained_features()
ohfeats = multilabel_onehot(seg, num_labels, ignore_index=0)
# Accumulate bincounts and identify nonzeros
for key, value in features.items():
if key not in upsample_grids:
upsample_grids[key] = upsample_grid(value.shape[2:],
seg.shape[2:], imshape,
scale_offset=scale_offset_map.get(key, None)
if scale_offset_map is not None else None,
dtype=value.dtype, device=value.device)
upsampled = torch.nn.functional.grid_sample(value,
upsample_grids[key].expand(
(value.shape[0],) + upsample_grids[key].shape[1:]),
padding_mode='border')
if key not in cov:
cov[key] = RunningCrossCovariance()
cov[key].add(upsampled, ohfeats)
for layer in cov:
save_state_dict(cov[layer],
os.path.join(outdir, safe_dir_name(layer), 'covariance.npz'))
return cov
def multilabel_onehot(labels, num_labels, dtype=None, ignore_index=None):
'''
Converts a multilabel tensor into a onehot tensor.
The input labels is a tensor of shape (samples, multilabels, y, x).
The output is a tensor of shape (samples, num_labels, y, x).
If ignore_index is specified, labels with that index are ignored.
Each x in labels should be 0 <= x < num_labels, or x == ignore_index.
'''
assert ignore_index is None or ignore_index <= 0
if dtype is None:
dtype = torch.float
device = labels.device
chans = num_labels + (-ignore_index if ignore_index else 0)
outshape = (labels.shape[0], chans) + labels.shape[2:]
result = torch.zeros(outshape, device=device, dtype=dtype)
if ignore_index and ignore_index < 0:
labels = labels + (-ignore_index)
result.scatter_(1, labels, 1)
if ignore_index and ignore_index < 0:
result = result[:, -ignore_index:]
elif ignore_index is not None:
result[:, ignore_index] = 0
return result
def load_npy_if_present(outdir, filename, device):
filepath = os.path.join(outdir, filename)
if os.path.isfile(filepath):
data = numpy.load(filepath)
return torch.from_numpy(data).to(device)
return 0
def load_npz_if_present(outdir, filename, varnames, device):
filepath = os.path.join(outdir, filename)
if os.path.isfile(filepath):
data = numpy.load(filepath)
numpy_result = [data[n] for n in varnames]
return tuple(torch.from_numpy(data).to(device) for data in numpy_result)
return None
def load_quantile_if_present(outdir, filename, device):
filepath = os.path.join(outdir, filename)
if os.path.isfile(filepath):
data = numpy.load(filepath)
result = RunningQuantile(state=data)
result.to_(device)
return result
return None
def load_conditional_quantile_if_present(outdir, filename):
filepath = os.path.join(outdir, filename)
if os.path.isfile(filepath):
data = numpy.load(filepath)
result = RunningConditionalQuantile(state=data)
return result
return None
def load_topk_if_present(outdir, filename, device):
filepath = os.path.join(outdir, filename)
if os.path.isfile(filepath):
data = numpy.load(filepath)
result = RunningTopK(state=data)
result.to_(device)
return result
return None
def load_covariance_if_present(outdir, filename, device):
filepath = os.path.join(outdir, filename)
if os.path.isfile(filepath):
data = numpy.load(filepath)
result = RunningCrossCovariance(state=data)
result.to_(device)
return result
return None
def save_state_dict(obj, filepath):
dirname = os.path.dirname(filepath)
os.makedirs(dirname, exist_ok=True)
dic = obj.state_dict()
numpy.savez(filepath, **dic)
def upsample_grid(data_shape, target_shape, input_shape=None,
scale_offset=None, dtype=torch.float, device=None):
'''Prepares a grid to use with grid_sample to upsample a batch of
features in data_shape to the target_shape. Can use scale_offset
and input_shape to center the grid in a nondefault way: scale_offset
maps feature pixels to input_shape pixels, and it is assumed that
the target_shape is a uniform downsampling of input_shape.'''
# Default is that nothing is resized.
if target_shape is None:
target_shape = data_shape
# Make a default scale_offset to fill the image if there isn't one
if scale_offset is None:
scale = tuple(float(ts) / ds
for ts, ds in zip(target_shape, data_shape))
offset = tuple(0.5 * s - 0.5 for s in scale)
else:
scale, offset = (v for v in zip(*scale_offset))
# Handle downsampling for different input vs target shape.
if input_shape is not None:
scale = tuple(s * (ts - 1) / (ns - 1)
for s, ns, ts in zip(scale, input_shape, target_shape))
offset = tuple(o * (ts - 1) / (ns - 1)
for o, ns, ts in zip(offset, input_shape, target_shape))
# Pytorch needs target coordinates in terms of source coordinates [-1..1]
ty, tx = (((torch.arange(ts, dtype=dtype, device=device) - o)
* (2 / (s * (ss - 1))) - 1)
for ts, ss, s, o, in zip(target_shape, data_shape, scale, offset))
# Whoa, note that grid_sample reverses the order y, x -> x, y.
grid = torch.stack(
(tx[None,:].expand(target_shape), ty[:,None].expand(target_shape)),2
)[None,:,:,:].expand((1, target_shape[0], target_shape[1], 2))
return grid
def safe_dir_name(filename):
keepcharacters = (' ','.','_','-')
return ''.join(c
for c in filename if c.isalnum() or c in keepcharacters).rstrip()
bargraph_palette = [
('#4B4CBF', '#B6B6F2'),
('#55B05B', '#B6F2BA'),
('#50BDAC', '#A5E5DB'),
('#81C679', '#C0FF9B'),
('#F0883B', '#F2CFB6'),
('#D4CF24', '#F2F1B6'),
('#D92E2B', '#F2B6B6'),
('#AB6BC6', '#CFAAFF'),
]
def make_svg_bargraph(labels, heights, categories,
barheight=100, barwidth=12, show_labels=True, filename=None):
# if len(labels) == 0:
# return # Nothing to do
unitheight = float(barheight) / max(max(heights, default=1), 1)
textheight = barheight if show_labels else 0
labelsize = float(barwidth)
gap = float(barwidth) / 4
textsize = barwidth + gap
rollup = max(heights, default=1)
textmargin = float(labelsize) * 2 / 3
leftmargin = 32
rightmargin = 8
svgwidth = len(heights) * (barwidth + gap) + 2 * leftmargin + rightmargin
svgheight = barheight + textheight
# create an SVG XML element
svg = et.Element('svg', width=str(svgwidth), height=str(svgheight),
version='1.1', xmlns='http://www.w3.org/2000/svg')
# Draw the bar graph
basey = svgheight - textheight
x = leftmargin
# Add units scale on left
if len(heights):
for h in [1, (max(heights) + 1) // 2, max(heights)]:
et.SubElement(svg, 'text', x='0', y='0',
style=('font-family:sans-serif;font-size:%dpx;' +
'text-anchor:end;alignment-baseline:hanging;' +
'transform:translate(%dpx, %dpx);') %
(textsize, x - gap, basey - h * unitheight)).text = str(h)
et.SubElement(svg, 'text', x='0', y='0',
style=('font-family:sans-serif;font-size:%dpx;' +
'text-anchor:middle;' +
'transform:translate(%dpx, %dpx) rotate(-90deg)') %
(textsize, x - gap - textsize, basey - h * unitheight / 2)
).text = 'units'
# Draw big category background rectangles
for catindex, (cat, catcount) in enumerate(categories):
if not catcount:
continue
et.SubElement(svg, 'rect', x=str(x), y=str(basey - rollup * unitheight),
width=(str((barwidth + gap) * catcount - gap)),
height = str(rollup*unitheight),
fill=bargraph_palette[catindex % len(bargraph_palette)][1])
x += (barwidth + gap) * catcount
# Draw small bars as well as 45degree text labels
x = leftmargin
catindex = -1
catcount = 0
for label, height in zip(labels, heights):
while not catcount and catindex <= len(categories):
catindex += 1
catcount = categories[catindex][1]
color = bargraph_palette[catindex % len(bargraph_palette)][0]
et.SubElement(svg, 'rect', x=str(x), y=str(basey-(height * unitheight)),
width=str(barwidth), height=str(height * unitheight),
fill=color)
x += barwidth
if show_labels:
et.SubElement(svg, 'text', x='0', y='0',
style=('font-family:sans-serif;font-size:%dpx;text-anchor:end;'+
'transform:translate(%dpx, %dpx) rotate(-45deg);') %
(labelsize, x, basey + textmargin)).text = readable(label)
x += gap
catcount -= 1
# Text labels for each category
x = leftmargin
for cat, catcount in categories:
if not catcount:
continue
et.SubElement(svg, 'text', x='0', y='0',
style=('font-family:sans-serif;font-size:%dpx;text-anchor:end;'+
'transform:translate(%dpx, %dpx) rotate(-90deg);') %
(textsize, x + (barwidth + gap) * catcount - gap,
basey - rollup * unitheight + gap)).text = '%d %s' % (
catcount, readable(cat + ('s' if catcount != 1 else '')))
x += (barwidth + gap) * catcount
# Output - this is the bare svg.
result = et.tostring(svg)
if filename:
f = open(filename, 'wb')
# When writing to a file a special header is needed.
f.write(''.join([
'<?xml version=\"1.0\" standalone=\"no\"?>\n',
'<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n',
'\"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n']
).encode('utf-8'))
f.write(result)
f.close()
return result
readable_replacements = [(re.compile(r[0]), r[1]) for r in [
(r'-[sc]$', ''),
(r'_', ' '),
]]
def readable(label):
for pattern, subst in readable_replacements:
label= re.sub(pattern, subst, label)
return label
def reverse_normalize_from_transform(transform):
'''
Crawl around the transforms attached to a dataset looking for a
Normalize transform, and return it a corresponding ReverseNormalize,
or None if no normalization is found.
'''
if isinstance(transform, torchvision.transforms.Normalize):
return ReverseNormalize(transform.mean, transform.std)
t = getattr(transform, 'transform', None)
if t is not None:
return reverse_normalize_from_transform(t)
transforms = getattr(transform, 'transforms', None)
if transforms is not None:
for t in reversed(transforms):
result = reverse_normalize_from_transform(t)
if result is not None:
return result
return None
class ReverseNormalize:
'''
Applies the reverse of torchvision.transforms.Normalize.
'''
def __init__(self, mean, stdev):
mean = numpy.array(mean)
stdev = numpy.array(stdev)
self.mean = torch.from_numpy(mean)[None,:,None,None].float()
self.stdev = torch.from_numpy(stdev)[None,:,None,None].float()
def __call__(self, data):
device = data.device
return data.mul(self.stdev.to(device)).add_(self.mean.to(device))
class ImageOnlySegRunner:
def __init__(self, dataset, recover_image=None):
if recover_image is None:
recover_image = reverse_normalize_from_transform(dataset)
self.recover_image = recover_image
self.dataset = dataset
def get_label_and_category_names(self):
return [('-', '-')], ['-']
def run_and_segment_batch(self, batch, model,
want_bincount=False, want_rgb=False):
[im] = batch
device = next(model.parameters()).device
if want_rgb:
rgb = self.recover_image(im.clone()
).permute(0, 2, 3, 1).mul_(255).clamp(0, 255).byte()
else:
rgb = None
# Stubs for seg and bc
seg = torch.zeros(im.shape[0], 1, 1, 1, dtype=torch.long)
bc = torch.ones(im.shape[0], 1, dtype=torch.long)
# Run the model.
model(im.to(device))
return seg, bc, rgb, im.shape[2:]
class ClassifierSegRunner:
def __init__(self, dataset, recover_image=None):
# The dataset contains explicit segmentations
if recover_image is None:
recover_image = reverse_normalize_from_transform(dataset)
self.recover_image = recover_image
self.dataset = dataset
def get_label_and_category_names(self):
catnames = self.dataset.categories
label_and_cat_names = [(readable(label),
catnames[self.dataset.label_category[i]])
for i, label in enumerate(self.dataset.labels)]
return label_and_cat_names, catnames
def run_and_segment_batch(self, batch, model,
want_bincount=False, want_rgb=False):
'''
Runs the dissected model on one batch of the dataset, and
returns a multilabel semantic segmentation for the data.
Given a batch of size (n, c, y, x) the segmentation should
be a (long integer) tensor of size (n, d, y//r, x//r) where
d is the maximum number of simultaneous labels given to a pixel,
and where r is some (optional) resolution reduction factor.
In the segmentation returned, the label `0` is reserved for
the background "no-label".
In addition to the segmentation, bc, rgb, and shape are returned
where bc is a per-image bincount counting returned label pixels,
rgb is a viewable (n, y, x, rgb) byte image tensor for the data
for visualizations (reversing normalizations, for example), and
shape is the (y, x) size of the data. If want_bincount or
want_rgb are False, those return values may be None.
'''
im, seg, bc = batch
device = next(model.parameters()).device
if want_rgb:
rgb = self.recover_image(im.clone()
).permute(0, 2, 3, 1).mul_(255).clamp(0, 255).byte()
else:
rgb = None
# Run the model.
model(im.to(device))
return seg, bc, rgb, im.shape[2:]
class GeneratorSegRunner:
def __init__(self, segmenter):
# The segmentations are given by an algorithm
if segmenter is None:
segmenter = UnifiedParsingSegmenter(segsizes=[256], segdiv='quad')
self.segmenter = segmenter
self.num_classes = len(segmenter.get_label_and_category_names()[0])
def get_label_and_category_names(self):
return self.segmenter.get_label_and_category_names()
def run_and_segment_batch(self, batch, model,
want_bincount=False, want_rgb=False):
'''
Runs the dissected model on one batch of the dataset, and
returns a multilabel semantic segmentation for the data.
Given a batch of size (n, c, y, x) the segmentation should
be a (long integer) tensor of size (n, d, y//r, x//r) where
d is the maximum number of simultaneous labels given to a pixel,
and where r is some (optional) resolution reduction factor.
In the segmentation returned, the label `0` is reserved for
the background "no-label".
In addition to the segmentation, bc, rgb, and shape are returned
where bc is a per-image bincount counting returned label pixels,
rgb is a viewable (n, y, x, rgb) byte image tensor for the data
for visualizations (reversing normalizations, for example), and
shape is the (y, x) size of the data. If want_bincount or
want_rgb are False, those return values may be None.
'''
device = next(model.parameters()).device
z_batch = batch[0]
tensor_images = model(z_batch.to(device))
seg = self.segmenter.segment_batch(tensor_images, downsample=2)
if want_bincount:
index = torch.arange(z_batch.shape[0],
dtype=torch.long, device=device)
bc = (seg + index[:, None, None, None] * self.num_classes).view(-1
).bincount(minlength=z_batch.shape[0] * self.num_classes)
bc = bc.view(z_batch.shape[0], self.num_classes)
else:
bc = None
if want_rgb:
images = ((tensor_images + 1) / 2 * 255)
rgb = images.permute(0, 2, 3, 1).clamp(0, 255).byte()
else:
rgb = None
return seg, bc, rgb, tensor_images.shape[2:]
|