File size: 73,543 Bytes
29cdbe6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
'''
To run dissection:

1. Load up the convolutional model you wish to dissect, and wrap it in
   an InstrumentedModel; then call imodel.retain_layers([layernames,..])
   to instrument the layers of interest.
2. Load the segmentation dataset using the BrodenDataset class;
   use the transform_image argument to normalize images to be
   suitable for the model, or the size argument to truncate the dataset.
3. Choose a directory in which to write the output, and call
   dissect(outdir, model, dataset).

Example:

    from dissect import InstrumentedModel, dissect
    from broden import BrodenDataset

    model = InstrumentedModel(load_my_model())
    model.eval()
    model.cuda()
    model.retain_layers(['conv1', 'conv2', 'conv3', 'conv4', 'conv5'])
    bds = BrodenDataset('dataset/broden1_227',
            transform_image=transforms.Compose([
                transforms.ToTensor(),
                transforms.Normalize(IMAGE_MEAN, IMAGE_STDEV)]),
            size=1000)
    dissect('result/dissect', model, bds,
            examples_per_unit=10)
'''

import torch, numpy, os, re, json, shutil, types, tempfile, torchvision
# import warnings
# warnings.simplefilter('error', UserWarning)
from PIL import Image
from xml.etree import ElementTree as et
from collections import OrderedDict, defaultdict
from .progress import verbose_progress, default_progress, print_progress
from .progress import desc_progress
from .runningstats import RunningQuantile, RunningTopK
from .runningstats import RunningCrossCovariance, RunningConditionalQuantile
from .sampler import FixedSubsetSampler
from .actviz import activation_visualization
from .segviz import segment_visualization, high_contrast
from .workerpool import WorkerBase, WorkerPool
from .segmenter import UnifiedParsingSegmenter

def dissect(outdir, model, dataset,
        segrunner=None,
        train_dataset=None,
        model_segmenter=None,
        quantile_threshold=0.005,
        iou_threshold=0.05,
        iqr_threshold=0.01,
        examples_per_unit=100,
        batch_size=100,
        num_workers=24,
        seg_batch_size=5,
        make_images=True,
        make_labels=True,
        make_maxiou=False,
        make_covariance=False,
        make_report=True,
        make_row_images=True,
        make_single_images=False,
        rank_all_labels=False,
        netname=None,
        meta=None,
        merge=None,
        settings=None,
        ):
    '''
    Runs net dissection in-memory, using pytorch, and saves visualizations
    and metadata into outdir.
    '''
    assert not model.training, 'Run model.eval() before dissection'
    if netname is None:
        netname = type(model).__name__
    if segrunner is None:
        segrunner = ClassifierSegRunner(dataset)
    if train_dataset is None:
        train_dataset = dataset
    make_iqr = (quantile_threshold == 'iqr')
    with torch.no_grad():
        device = next(model.parameters()).device
        levels = None
        labelnames, catnames = None, None
        maxioudata, iqrdata = None, None
        labeldata = None
        iqrdata, cov = None, None

        labelnames, catnames = segrunner.get_label_and_category_names()
        label_category = [catnames.index(c) if c in catnames else 0
                for l, c in labelnames]

        # First, always collect qunatiles and topk information.
        segloader = torch.utils.data.DataLoader(dataset,
                batch_size=batch_size, num_workers=num_workers,
                pin_memory=(device.type == 'cuda'))
        quantiles, topk = collect_quantiles_and_topk(outdir, model,
            segloader, segrunner, k=examples_per_unit)

        # Thresholds can be automatically chosen by maximizing iqr
        if make_iqr:
            # Get thresholds based on an IQR optimization
            segloader = torch.utils.data.DataLoader(train_dataset,
                    batch_size=1, num_workers=num_workers,
                    pin_memory=(device.type == 'cuda'))
            iqrdata = collect_iqr(outdir, model, segloader, segrunner)
            max_iqr, full_iqr_levels = iqrdata[:2]
            max_iqr_agreement = iqrdata[4]
            # qualified_iqr[max_iqr_quantile[layer] > 0.5] = 0
            levels = {layer: full_iqr_levels[layer][
                    max_iqr[layer].max(0)[1],
                    torch.arange(max_iqr[layer].shape[1])].to(device)
                    for layer in full_iqr_levels}
        else:
            levels = {k: qc.quantiles([1.0 - quantile_threshold])[:,0]
                      for k, qc in quantiles.items()}

        quantiledata = (topk, quantiles, levels, quantile_threshold)

        if make_images:
            segloader = torch.utils.data.DataLoader(dataset,
                    batch_size=batch_size, num_workers=num_workers,
                    pin_memory=(device.type == 'cuda'))
            generate_images(outdir, model, dataset, topk, levels, segrunner,
                    row_length=examples_per_unit, batch_size=seg_batch_size,
                    row_images=make_row_images,
                    single_images=make_single_images,
                    num_workers=num_workers)

        if make_maxiou:
            assert train_dataset, "Need training dataset for maxiou."
            segloader = torch.utils.data.DataLoader(train_dataset,
                    batch_size=1, num_workers=num_workers,
                    pin_memory=(device.type == 'cuda'))
            maxioudata = collect_maxiou(outdir, model, segloader,
                    segrunner)

        if make_labels:
            segloader = torch.utils.data.DataLoader(dataset,
                    batch_size=1, num_workers=num_workers,
                    pin_memory=(device.type == 'cuda'))
            iou_scores, iqr_scores, tcs, lcs, ccs, ics = (
                    collect_bincounts(outdir, model, segloader,
                    levels, segrunner))
            labeldata = (iou_scores, iqr_scores, lcs, ccs, ics, iou_threshold,
                    iqr_threshold)

        if make_covariance:
            segloader = torch.utils.data.DataLoader(dataset,
                    batch_size=seg_batch_size,
                    num_workers=num_workers,
                    pin_memory=(device.type == 'cuda'))
            cov = collect_covariance(outdir, model, segloader, segrunner)

        if make_report:
            generate_report(outdir,
                    quantiledata=quantiledata,
                    labelnames=labelnames,
                    catnames=catnames,
                    labeldata=labeldata,
                    maxioudata=maxioudata,
                    iqrdata=iqrdata,
                    covariancedata=cov,
                    rank_all_labels=rank_all_labels,
                    netname=netname,
                    meta=meta,
                    mergedata=merge,
                    settings=settings)

        return quantiledata, labeldata

def generate_report(outdir, quantiledata, labelnames=None, catnames=None,
        labeldata=None, maxioudata=None, iqrdata=None, covariancedata=None,
        rank_all_labels=False, netname='Model', meta=None, settings=None,
        mergedata=None):
    '''
    Creates dissection.json reports and summary bargraph.svg files in the
    specified output directory, and copies a dissection.html interface
    to go along with it.
    '''
    all_layers = []
    # Current source code directory, for html to copy.
    srcdir = os.path.realpath(
       os.path.join(os.getcwd(), os.path.dirname(__file__)))
    # Unpack arguments
    topk, quantiles, levels, quantile_threshold = quantiledata
    top_record = dict(
            netname=netname,
            meta=meta,
            default_ranking='unit',
            quantile_threshold=quantile_threshold)
    if settings is not None:
        top_record['settings'] = settings
    if labeldata is not None:
        iou_scores, iqr_scores, lcs, ccs, ics, iou_threshold, iqr_threshold = (
                labeldata)
        catorder = {'object': -7, 'scene': -6, 'part': -5,
                    'piece': -4,
                    'material': -3, 'texture': -2, 'color': -1}
        for i, cat in enumerate(c for c in catnames if c not in catorder):
            catorder[cat] = i
        catnumber = {n: i for i, n in enumerate(catnames)}
        catnumber['-'] = 0
        top_record['default_ranking'] = 'label'
        top_record['iou_threshold'] = iou_threshold
        top_record['iqr_threshold'] = iqr_threshold
        labelnumber = dict((name[0], num)
                for num, name in enumerate(labelnames))
    # Make a segmentation color dictionary
    segcolors = {}
    for i, name in enumerate(labelnames):
        key = ','.join(str(s) for s in high_contrast[i % len(high_contrast)])
        if key in segcolors:
            segcolors[key] += '/' + name[0]
        else:
            segcolors[key] = name[0]
    top_record['segcolors'] = segcolors
    for layer in topk.keys():
        units, rankings = [], []
        record = dict(layer=layer, units=units, rankings=rankings)
        # For every unit, we always have basic visualization information.
        topa, topi = topk[layer].result()
        lev = levels[layer]
        for u in range(len(topa)):
            units.append(dict(
                unit=u,
                interp=True,
                level=lev[u].item(),
                top=[dict(imgnum=i.item(), maxact=a.item())
                    for i, a in zip(topi[u], topa[u])],
                ))
        rankings.append(dict(name="unit", score=list([
            u for u in range(len(topa))])))
        # TODO: consider including stats and ranking based on quantiles,
        # variance, connectedness here.

        # if we have labeldata, then every unit also gets a bunch of other info
        if labeldata is not None:
            lscore, qscore, cc, ic = [dat[layer]
                    for dat in [iou_scores, iqr_scores, ccs, ics]]
            if iqrdata is not None:
                # If we have IQR thresholds, assign labels based on that
                max_iqr, max_iqr_level = iqrdata[:2]
                best_label = max_iqr[layer].max(0)[1]
                best_score = lscore[best_label, torch.arange(lscore.shape[1])]
                best_qscore = qscore[best_label, torch.arange(lscore.shape[1])]
            else:
                # Otherwise, assign labels based on max iou
                best_score, best_label = lscore.max(0)
                best_qscore = qscore[best_label, torch.arange(qscore.shape[1])]
            record['iou_threshold'] = iou_threshold,
            for u, urec in enumerate(units):
                score, qscore, label = (
                        best_score[u], best_qscore[u], best_label[u])
                urec.update(dict(
                    iou=score.item(),
                    iou_iqr=qscore.item(),
                    lc=lcs[label].item(),
                    cc=cc[catnumber[labelnames[label][1]], u].item(),
                    ic=ic[label, u].item(),
                    interp=(qscore.item() > iqr_threshold and
                        score.item() > iou_threshold),
                    iou_labelnum=label.item(),
                    iou_label=labelnames[label.item()][0],
                    iou_cat=labelnames[label.item()][1],
                    ))
        if maxioudata is not None:
            max_iou, max_iou_level, max_iou_quantile = maxioudata
            qualified_iou = max_iou[layer].clone()
            # qualified_iou[max_iou_quantile[layer] > 0.75] = 0
            best_score, best_label = qualified_iou.max(0)
            for u, urec in enumerate(units):
                urec.update(dict(
                    maxiou=best_score[u].item(),
                    maxiou_label=labelnames[best_label[u].item()][0],
                    maxiou_cat=labelnames[best_label[u].item()][1],
                    maxiou_level=max_iou_level[layer][best_label[u], u].item(),
                    maxiou_quantile=max_iou_quantile[layer][
                        best_label[u], u].item()))
        if iqrdata is not None:
            [max_iqr, max_iqr_level, max_iqr_quantile,
                    max_iqr_iou, max_iqr_agreement] = iqrdata
            qualified_iqr = max_iqr[layer].clone()
            qualified_iqr[max_iqr_quantile[layer] > 0.5] = 0
            best_score, best_label = qualified_iqr.max(0)
            for u, urec in enumerate(units):
                urec.update(dict(
                    iqr=best_score[u].item(),
                    iqr_label=labelnames[best_label[u].item()][0],
                    iqr_cat=labelnames[best_label[u].item()][1],
                    iqr_level=max_iqr_level[layer][best_label[u], u].item(),
                    iqr_quantile=max_iqr_quantile[layer][
                        best_label[u], u].item(),
                    iqr_iou=max_iqr_iou[layer][best_label[u], u].item()
                    ))
        if covariancedata is not None:
            score = covariancedata[layer].correlation()
            best_score, best_label = score.max(1)
            for u, urec in enumerate(units):
                urec.update(dict(
                    cor=best_score[u].item(),
                    cor_label=labelnames[best_label[u].item()][0],
                    cor_cat=labelnames[best_label[u].item()][1]
                    ))
        if mergedata is not None:
            # Final step: if the user passed any data to merge into the
            # units, merge them now.  This can be used, for example, to
            # indiate that a unit is not interpretable based on some
            # outside analysis of unit statistics.
            for lrec in mergedata.get('layers', []):
                if lrec['layer'] == layer:
                    break
            else:
                lrec = None
            for u, urec in enumerate(lrec.get('units', []) if lrec else []):
                units[u].update(urec)
        # After populating per-unit info, populate per-layer ranking info
        if labeldata is not None:
            # Collect all labeled units
            labelunits = defaultdict(list)
            all_labelunits = defaultdict(list)
            for u, urec in enumerate(units):
                if urec['interp']:
                    labelunits[urec['iou_labelnum']].append(u)
                all_labelunits[urec['iou_labelnum']].append(u)
            # Sort all units in order with most popular label first.
            label_ordering = sorted(units,
                # Sort by:
                key=lambda r: (-1 if r['interp'] else 0,  # interpretable
                    -len(labelunits[r['iou_labelnum']]),  # label freq, score
                    -max([units[u]['iou']
                        for u in labelunits[r['iou_labelnum']]], default=0),
                    r['iou_labelnum'],                    # label
                    -r['iou']))                           # unit score
            # Add label and iou ranking.
            rankings.append(dict(name="label", score=(numpy.argsort(list(
                ur['unit'] for ur in label_ordering))).tolist()))
            rankings.append(dict(name="max iou", metric="iou", score=list(
                -ur['iou'] for ur in units)))
            # Add ranking for top labels
            # for labelnum in [n for n in sorted(
            #     all_labelunits.keys(), key=lambda x:
            #         -len(all_labelunits[x])) if len(all_labelunits[n])]:
            #     label = labelnames[labelnum][0]
            #     rankings.append(dict(name="%s-iou" % label,
            #         concept=label, metric='iou',
            #         score=(-lscore[labelnum, :]).tolist()))
            # Collate labels by category then frequency.
            record['labels'] = [dict(
                        label=labelnames[label][0],
                        labelnum=label,
                        units=labelunits[label],
                        cat=labelnames[label][1])
                    for label in (sorted(labelunits.keys(),
                        # Sort by:
                        key=lambda l: (catorder.get(          # category
                            labelnames[l][1], 0),
                            -len(labelunits[l]),              # label freq
                            -max([units[u]['iou'] for u in labelunits[l]],
                                default=0) # score
                            ))) if len(labelunits[label])]
            # Total number of interpretable units.
            record['interpretable'] = sum(len(group['units'])
                    for group in record['labels'])
            # Make a bargraph of labels
            os.makedirs(os.path.join(outdir, safe_dir_name(layer)),
                    exist_ok=True)
            catgroups = OrderedDict()
            for _, cat in sorted([(v, k) for k, v in catorder.items()]):
                catgroups[cat] = []
            for rec in record['labels']:
                if rec['cat'] not in catgroups:
                    catgroups[rec['cat']] = []
                catgroups[rec['cat']].append(rec['label'])
            make_svg_bargraph(
                    [rec['label'] for rec in record['labels']],
                    [len(rec['units']) for rec in record['labels']],
                    [(cat, len(group)) for cat, group in catgroups.items()],
                    filename=os.path.join(outdir, safe_dir_name(layer),
                        'bargraph.svg'))
            # Only show the bargraph if it is non-empty.
            if len(record['labels']):
                record['bargraph'] = 'bargraph.svg'
        if maxioudata is not None:
            rankings.append(dict(name="max maxiou", metric="maxiou", score=list(
                    -ur['maxiou'] for ur in units)))
        if iqrdata is not None:
            rankings.append(dict(name="max iqr", metric="iqr", score=list(
                    -ur['iqr'] for ur in units)))
        if covariancedata is not None:
            rankings.append(dict(name="max cor", metric="cor", score=list(
                    -ur['cor'] for ur in units)))

        all_layers.append(record)
    # Now add the same rankings to every layer...
    all_labels = None
    if rank_all_labels:
        all_labels = [name for name, cat in labelnames]
    if labeldata is not None:
        # Count layers+quadrants with a given label, and sort by freq
        counted_labels = defaultdict(int)
        for label in [
                re.sub(r'-(?:t|b|l|r|tl|tr|bl|br)$', '', unitrec['iou_label'])
                for record in all_layers for unitrec in record['units']]:
            counted_labels[label] += 1
        if all_labels is None:
            all_labels = [label for count, label in sorted((-v, k)
                for k, v in counted_labels.items())]
        for record in all_layers:
            layer = record['layer']
            for label in all_labels:
                labelnum = labelnumber[label]
                record['rankings'].append(dict(name="%s-iou" % label,
                    concept=label, metric='iou',
                    score=(-iou_scores[layer][labelnum, :]).tolist()))

    if maxioudata is not None:
        if all_labels is None:
            counted_labels = defaultdict(int)
            for label in [
                    re.sub(r'-(?:t|b|l|r|tl|tr|bl|br)$', '',
                        unitrec['maxiou_label'])
                    for record in all_layers for unitrec in record['units']]:
                counted_labels[label] += 1
            all_labels = [label for count, label in sorted((-v, k)
                for k, v in counted_labels.items())]
        qualified_iou = max_iou[layer].clone()
        qualified_iou[max_iou_quantile[layer] > 0.5] = 0
        for record in all_layers:
            layer = record['layer']
            for label in all_labels:
                labelnum = labelnumber[label]
                record['rankings'].append(dict(name="%s-maxiou" % label,
                    concept=label, metric='maxiou',
                    score=(-qualified_iou[labelnum, :]).tolist()))

    if iqrdata is not None:
        if all_labels is None:
            counted_labels = defaultdict(int)
            for label in [
                    re.sub(r'-(?:t|b|l|r|tl|tr|bl|br)$', '',
                        unitrec['iqr_label'])
                    for record in all_layers for unitrec in record['units']]:
                counted_labels[label] += 1
            all_labels = [label for count, label in sorted((-v, k)
                for k, v in counted_labels.items())]
        # qualified_iqr[max_iqr_quantile[layer] > 0.5] = 0
        for record in all_layers:
            layer = record['layer']
            qualified_iqr = max_iqr[layer].clone()
            for label in all_labels:
                labelnum = labelnumber[label]
                record['rankings'].append(dict(name="%s-iqr" % label,
                    concept=label, metric='iqr',
                    score=(-qualified_iqr[labelnum, :]).tolist()))

    if covariancedata is not None:
        if all_labels is None:
            counted_labels = defaultdict(int)
            for label in [
                    re.sub(r'-(?:t|b|l|r|tl|tr|bl|br)$', '',
                        unitrec['cor_label'])
                    for record in all_layers for unitrec in record['units']]:
                counted_labels[label] += 1
            all_labels = [label for count, label in sorted((-v, k)
                for k, v in counted_labels.items())]
        for record in all_layers:
            layer = record['layer']
            score = covariancedata[layer].correlation()
            for label in all_labels:
                labelnum = labelnumber[label]
                record['rankings'].append(dict(name="%s-cor" % label,
                    concept=label, metric='cor',
                    score=(-score[:, labelnum]).tolist()))

    for record in all_layers:
        layer = record['layer']
        # Dump per-layer json inside per-layer directory
        record['dirname'] = '.'
        with open(os.path.join(outdir, safe_dir_name(layer), 'dissect.json'),
                'w') as jsonfile:
            top_record['layers'] = [record]
            json.dump(top_record, jsonfile, indent=1)
        # Copy the per-layer html
        shutil.copy(os.path.join(srcdir, 'dissect.html'),
                os.path.join(outdir, safe_dir_name(layer), 'dissect.html'))
        record['dirname'] = safe_dir_name(layer)

    # Dump all-layer json in parent directory
    with open(os.path.join(outdir, 'dissect.json'), 'w') as jsonfile:
        top_record['layers'] = all_layers
        json.dump(top_record, jsonfile, indent=1)
    # Copy the all-layer html
    shutil.copy(os.path.join(srcdir, 'dissect.html'),
            os.path.join(outdir, 'dissect.html'))
    shutil.copy(os.path.join(srcdir, 'edit.html'),
            os.path.join(outdir, 'edit.html'))


def generate_images(outdir, model, dataset, topk, levels,
        segrunner, row_length=None, gap_pixels=5,
        row_images=True, single_images=False, prefix='',
        batch_size=100, num_workers=24):
    '''
    Creates an image strip file for every unit of every retained layer
    of the model, in the format [outdir]/[layername]/[unitnum]-top.jpg.
    Assumes that the indexes of topk refer to the indexes of dataset.
    Limits each strip to the top row_length images.
    '''
    progress = default_progress()
    needed_images = {}
    if row_images is False:
        row_length = 1
    # Pass 1: needed_images lists all images that are topk for some unit.
    for layer in topk:
        topresult = topk[layer].result()[1].cpu()
        for unit, row in enumerate(topresult):
            for rank, imgnum in enumerate(row[:row_length]):
                imgnum = imgnum.item()
                if imgnum not in needed_images:
                    needed_images[imgnum] = []
                needed_images[imgnum].append((layer, unit, rank))
    levels = {k: v.cpu().numpy() for k, v in levels.items()}
    row_length = len(row[:row_length])
    needed_sample = FixedSubsetSampler(sorted(needed_images.keys()))
    device = next(model.parameters()).device
    segloader = torch.utils.data.DataLoader(dataset,
            batch_size=batch_size, num_workers=num_workers,
            pin_memory=(device.type == 'cuda'),
            sampler=needed_sample)
    vizgrid, maskgrid, origrid, seggrid = [{} for _ in range(4)]
    # Pass 2: populate vizgrid with visualizations of top units.
    pool = None
    for i, batch in enumerate(
            progress(segloader, desc='Making images')):
        # Reverse transformation to get the image in byte form.
        seg, _, byte_im, _ = segrunner.run_and_segment_batch(batch, model,
                want_rgb=True)
        torch_features = model.retained_features()
        scale_offset = getattr(model, 'scale_offset', None)
        if pool is None:
            # Distribute the work across processes: create shared mmaps.
            for layer, tf in torch_features.items():
                [vizgrid[layer], maskgrid[layer], origrid[layer],
                        seggrid[layer]] = [
                    create_temp_mmap_grid((tf.shape[1],
                        byte_im.shape[1], row_length,
                        byte_im.shape[2] + gap_pixels, depth),
                        dtype='uint8',
                        fill=255)
                    for depth in [3, 4, 3, 3]]
            # Pass those mmaps to worker processes.
            pool = WorkerPool(worker=VisualizeImageWorker,
                    memmap_grid_info=[
                        {layer: (g.filename, g.shape, g.dtype)
                            for layer, g in grid.items()}
                        for grid in [vizgrid, maskgrid, origrid, seggrid]])
        byte_im = byte_im.cpu().numpy()
        numpy_seg = seg.cpu().numpy()
        features = {}
        for index in range(len(byte_im)):
            imgnum = needed_sample.samples[index + i*segloader.batch_size]
            for layer, unit, rank in needed_images[imgnum]:
                if layer not in features:
                    features[layer] = torch_features[layer].cpu().numpy()
                pool.add(layer, unit, rank,
                        byte_im[index],
                        features[layer][index, unit],
                        levels[layer][unit],
                        scale_offset[layer] if scale_offset else None,
                        numpy_seg[index])
    pool.join()
    # Pass 3: save image strips as [outdir]/[layer]/[unitnum]-[top/orig].jpg
    pool = WorkerPool(worker=SaveImageWorker)
    for layer, vg in progress(vizgrid.items(), desc='Saving images'):
        os.makedirs(os.path.join(outdir, safe_dir_name(layer),
            prefix + 'image'), exist_ok=True)
        if single_images:
           os.makedirs(os.path.join(outdir, safe_dir_name(layer),
               prefix + 's-image'), exist_ok=True)
        og, sg, mg = origrid[layer], seggrid[layer], maskgrid[layer]
        for unit in progress(range(len(vg)), desc='Units'):
            for suffix, grid in [('top.jpg', vg), ('orig.jpg', og),
                    ('seg.png', sg), ('mask.png', mg)]:
                strip = grid[unit].reshape(
                        (grid.shape[1], grid.shape[2] * grid.shape[3],
                            grid.shape[4]))
                if row_images:
                    filename = os.path.join(outdir, safe_dir_name(layer),
                            prefix + 'image', '%d-%s' % (unit, suffix))
                    pool.add(strip[:,:-gap_pixels,:].copy(), filename)
                    # Image.fromarray(strip[:,:-gap_pixels,:]).save(filename,
                    #        optimize=True, quality=80)
                if single_images:
                    single_filename = os.path.join(outdir, safe_dir_name(layer),
                        prefix + 's-image', '%d-%s' % (unit, suffix))
                    pool.add(strip[:,:strip.shape[1] // row_length
                        - gap_pixels,:].copy(), single_filename)
                    # Image.fromarray(strip[:,:strip.shape[1] // row_length
                    #     - gap_pixels,:]).save(single_filename,
                    #             optimize=True, quality=80)
    pool.join()
    # Delete the shared memory map files
    clear_global_shared_files([g.filename
        for grid in [vizgrid, maskgrid, origrid, seggrid]
        for g in grid.values()])

global_shared_files = {}
def create_temp_mmap_grid(shape, dtype, fill):
    dtype = numpy.dtype(dtype)
    filename = os.path.join(tempfile.mkdtemp(), 'temp-%s-%s.mmap' %
            ('x'.join('%d' % s for s in shape), dtype.name))
    fid = open(filename, mode='w+b')
    original = numpy.memmap(fid, dtype=dtype, mode='w+', shape=shape)
    original.fid = fid
    original[...] = fill
    global_shared_files[filename] = original
    return original

def shared_temp_mmap_grid(filename, shape, dtype):
    if filename not in global_shared_files:
        global_shared_files[filename] = numpy.memmap(
                filename, dtype=dtype, mode='r+', shape=shape)
    return global_shared_files[filename]

def clear_global_shared_files(filenames):
    for fn in filenames:
        if fn in global_shared_files:
            del global_shared_files[fn]
        try:
            os.unlink(fn)
        except OSError:
            pass

class VisualizeImageWorker(WorkerBase):
    def setup(self, memmap_grid_info):
        self.vizgrid, self.maskgrid, self.origrid, self.seggrid = [
                {layer: shared_temp_mmap_grid(*info)
                    for layer, info in grid.items()}
                for grid in memmap_grid_info]
    def work(self, layer, unit, rank,
            byte_im, acts, level, scale_offset, seg):
        self.origrid[layer][unit,:,rank,:byte_im.shape[0],:] = byte_im
        [self.vizgrid[layer][unit,:,rank,:byte_im.shape[0],:],
         self.maskgrid[layer][unit,:,rank,:byte_im.shape[0],:]] = (
                    activation_visualization(
                        byte_im,
                        acts,
                        level,
                        scale_offset=scale_offset,
                        return_mask=True))
        self.seggrid[layer][unit,:,rank,:byte_im.shape[0],:] = (
                    segment_visualization(seg, byte_im.shape[0:2]))

class SaveImageWorker(WorkerBase):
    def work(self, data, filename):
        Image.fromarray(data).save(filename, optimize=True, quality=80)

def score_tally_stats(label_category, tc, truth, cc, ic):
    pred = cc[label_category]
    total = tc[label_category][:, None]
    truth = truth[:, None]
    epsilon = 1e-20 # avoid division-by-zero
    union = pred + truth - ic
    iou = ic.double() / (union.double() + epsilon)
    arr = torch.empty(size=(2, 2) + ic.shape, dtype=ic.dtype, device=ic.device)
    arr[0, 0] = ic
    arr[0, 1] = pred - ic
    arr[1, 0] = truth - ic
    arr[1, 1] = total - union
    arr = arr.double() / total.double()
    mi = mutual_information(arr)
    je = joint_entropy(arr)
    iqr = mi / je
    iqr[torch.isnan(iqr)] = 0 # Zero out any 0/0
    return iou, iqr

def collect_quantiles_and_topk(outdir, model, segloader,
        segrunner, k=100, resolution=1024):
    '''
    Collects (estimated) quantile information and (exact) sorted top-K lists
    for every channel in the retained layers of the model.  Returns
    a map of quantiles (one RunningQuantile for each layer) along with
    a map of topk (one RunningTopK for each layer).
    '''
    device = next(model.parameters()).device
    features = model.retained_features()
    cached_quantiles = {
            layer: load_quantile_if_present(os.path.join(outdir,
                safe_dir_name(layer)), 'quantiles.npz',
                device=torch.device('cpu'))
            for layer in features }
    cached_topks = {
            layer: load_topk_if_present(os.path.join(outdir,
                safe_dir_name(layer)), 'topk.npz',
                device=torch.device('cpu'))
            for layer in features }
    if (all(value is not None for value in cached_quantiles.values()) and
        all(value is not None for value in cached_topks.values())):
        return cached_quantiles, cached_topks

    layer_batch_size = 8
    all_layers = list(features.keys())
    layer_batches = [all_layers[i:i+layer_batch_size]
            for i in range(0, len(all_layers), layer_batch_size)]

    quantiles, topks = {}, {}
    progress = default_progress()
    for layer_batch in layer_batches:
        for i, batch in enumerate(progress(segloader, desc='Quantiles')):
            # We don't actually care about the model output.
            model(batch[0].to(device))
            features = model.retained_features()
            # We care about the retained values
            for key in layer_batch:
                value = features[key]
                if topks.get(key, None) is None:
                    topks[key] = RunningTopK(k)
                if quantiles.get(key, None) is None:
                    quantiles[key] = RunningQuantile(resolution=resolution)
                topvalue = value
                if len(value.shape) > 2:
                    topvalue, _ = value.view(*(value.shape[:2] + (-1,))).max(2)
                    # Put the channel index last.
                    value = value.permute(
                            (0,) + tuple(range(2, len(value.shape))) + (1,)
                            ).contiguous().view(-1, value.shape[1])
                quantiles[key].add(value)
                topks[key].add(topvalue)
        # Save GPU memory
        for key in layer_batch:
            quantiles[key].to_(torch.device('cpu'))
            topks[key].to_(torch.device('cpu'))
    for layer in quantiles:
        save_state_dict(quantiles[layer],
                os.path.join(outdir, safe_dir_name(layer), 'quantiles.npz'))
        save_state_dict(topks[layer],
                os.path.join(outdir, safe_dir_name(layer), 'topk.npz'))
    return quantiles, topks

def collect_bincounts(outdir, model, segloader, levels, segrunner):
    '''
    Returns label_counts, category_activation_counts, and intersection_counts,
    across the data set, counting the pixels of intersection between upsampled,
    thresholded model featuremaps, with segmentation classes in the segloader.

    label_counts (independent of model): pixels across the data set that
        are labeled with the given label.
    category_activation_counts (one per layer): for each feature channel,
        pixels across the dataset where the channel exceeds the level
        threshold.  There is one count per category: activations only
        contribute to the categories for which any category labels are
        present on the images.
    intersection_counts (one per layer): for each feature channel and
        label, pixels across the dataset where the channel exceeds
        the level, and the labeled segmentation class is also present.

    This is a performance-sensitive function.  Best performance is
    achieved with a counting scheme which assumes a segloader with
    batch_size 1.
    '''
    # Load cached data if present
    (iou_scores, iqr_scores,
            total_counts, label_counts, category_activation_counts,
            intersection_counts) = {}, {}, None, None, {}, {}
    found_all = True
    for layer in model.retained_features():
        filename = os.path.join(outdir, safe_dir_name(layer), 'bincounts.npz')
        if os.path.isfile(filename):
            data = numpy.load(filename)
            iou_scores[layer] = torch.from_numpy(data['iou_scores'])
            iqr_scores[layer] = torch.from_numpy(data['iqr_scores'])
            total_counts = torch.from_numpy(data['total_counts'])
            label_counts = torch.from_numpy(data['label_counts'])
            category_activation_counts[layer] = torch.from_numpy(
                    data['category_activation_counts'])
            intersection_counts[layer] = torch.from_numpy(
                    data['intersection_counts'])
        else:
            found_all = False
    if found_all:
        return (iou_scores, iqr_scores,
            total_counts, label_counts, category_activation_counts,
            intersection_counts)

    device = next(model.parameters()).device
    labelcat, categories = segrunner.get_label_and_category_names()
    label_category = [categories.index(c) if c in categories else 0
                for l, c in labelcat]
    num_labels, num_categories = (len(n) for n in [labelcat, categories])

    # One-hot vector of category for each label
    labelcat = torch.zeros(num_labels, num_categories,
            dtype=torch.long, device=device)
    labelcat.scatter_(1, torch.from_numpy(numpy.array(label_category,
        dtype='int64')).to(device)[:,None], 1)
    # Running bincounts
    # activation_counts = {}
    assert segloader.batch_size == 1 # category_activation_counts needs this.
    category_activation_counts = {}
    intersection_counts = {}
    label_counts = torch.zeros(num_labels, dtype=torch.long, device=device)
    total_counts = torch.zeros(num_categories, dtype=torch.long, device=device)
    progress = default_progress()
    scale_offset_map = getattr(model, 'scale_offset', None)
    upsample_grids = {}
    # total_batch_categories = torch.zeros(
    #         labelcat.shape[1], dtype=torch.long, device=device)
    for i, batch in enumerate(progress(segloader, desc='Bincounts')):
        seg, batch_label_counts, _, imshape = segrunner.run_and_segment_batch(
                batch, model, want_bincount=True, want_rgb=True)
        bc = batch_label_counts.cpu()
        batch_label_counts = batch_label_counts.to(device)
        seg = seg.to(device)
        features = model.retained_features()
        # Accumulate bincounts and identify nonzeros
        label_counts += batch_label_counts[0]
        batch_labels = bc[0].nonzero()[:,0]
        batch_categories = labelcat[batch_labels].max(0)[0]
        total_counts += batch_categories * (
                seg.shape[0] * seg.shape[2] * seg.shape[3])
        for key, value in features.items():
            if key not in upsample_grids:
                upsample_grids[key] = upsample_grid(value.shape[2:],
                        seg.shape[2:], imshape,
                        scale_offset=scale_offset_map.get(key, None)
                            if scale_offset_map is not None else None,
                        dtype=value.dtype, device=value.device)
            upsampled = torch.nn.functional.grid_sample(value,
                    upsample_grids[key], padding_mode='border')
            amask = (upsampled > levels[key][None,:,None,None].to(
                upsampled.device))
            ac = amask.int().view(amask.shape[1], -1).sum(1)
            # if key not in activation_counts:
            #     activation_counts[key] = ac
            # else:
            #     activation_counts[key] += ac
            # The fastest approach: sum over each label separately!
            for label in batch_labels.tolist():
                if label == 0:
                    continue  # ignore the background label
                imask = amask * ((seg == label).max(dim=1, keepdim=True)[0])
                ic = imask.int().view(imask.shape[1], -1).sum(1)
                if key not in intersection_counts:
                    intersection_counts[key] = torch.zeros(num_labels,
                            amask.shape[1], dtype=torch.long, device=device)
                intersection_counts[key][label] += ic
            # Count activations within images that have category labels.
            # Note: This only makes sense with batch-size one
            # total_batch_categories += batch_categories
            cc = batch_categories[:,None] * ac[None,:]
            if key not in category_activation_counts:
                category_activation_counts[key] = cc
            else:
                category_activation_counts[key] += cc
    iou_scores = {}
    iqr_scores = {}
    for k in intersection_counts:
        iou_scores[k], iqr_scores[k] = score_tally_stats(
            label_category, total_counts, label_counts,
            category_activation_counts[k], intersection_counts[k])
    for k in intersection_counts:
        numpy.savez(os.path.join(outdir, safe_dir_name(k), 'bincounts.npz'),
                iou_scores=iou_scores[k].cpu().numpy(),
                iqr_scores=iqr_scores[k].cpu().numpy(),
                total_counts=total_counts.cpu().numpy(),
                label_counts=label_counts.cpu().numpy(),
                category_activation_counts=category_activation_counts[k]
                    .cpu().numpy(),
                intersection_counts=intersection_counts[k].cpu().numpy(),
                levels=levels[k].cpu().numpy())
    return (iou_scores, iqr_scores,
            total_counts, label_counts, category_activation_counts,
            intersection_counts)

def collect_cond_quantiles(outdir, model, segloader, segrunner):
    '''
    Returns maxiou and maxiou_level across the data set, one per layer.

    This is a performance-sensitive function.  Best performance is
    achieved with a counting scheme which assumes a segloader with
    batch_size 1.
    '''
    device = next(model.parameters()).device
    cached_cond_quantiles = {
            layer: load_conditional_quantile_if_present(os.path.join(outdir,
                safe_dir_name(layer)), 'cond_quantiles.npz') # on cpu
            for layer in model.retained_features() }
    label_fracs = load_npy_if_present(outdir, 'label_fracs.npy', 'cpu')
    if label_fracs is not None and all(
            value is not None for value in cached_cond_quantiles.values()):
        return cached_cond_quantiles, label_fracs

    labelcat, categories = segrunner.get_label_and_category_names()
    label_category = [categories.index(c) if c in categories else 0
                for l, c in labelcat]
    num_labels, num_categories = (len(n) for n in [labelcat, categories])

    # One-hot vector of category for each label
    labelcat = torch.zeros(num_labels, num_categories,
            dtype=torch.long, device=device)
    labelcat.scatter_(1, torch.from_numpy(numpy.array(label_category,
        dtype='int64')).to(device)[:,None], 1)
    # Running maxiou
    assert segloader.batch_size == 1 # category_activation_counts needs this.
    conditional_quantiles = {}
    label_counts = torch.zeros(num_labels, dtype=torch.long, device=device)
    pixel_count = 0
    progress = default_progress()
    scale_offset_map = getattr(model, 'scale_offset', None)
    upsample_grids = {}
    common_conditions = set()
    if label_fracs is None or label_fracs is 0:
        for i, batch in enumerate(progress(segloader, desc='label fracs')):
            seg, batch_label_counts, im, _ = segrunner.run_and_segment_batch(
                    batch, model, want_bincount=True, want_rgb=True)
            batch_label_counts = batch_label_counts.to(device)
            features = model.retained_features()
            # Accumulate bincounts and identify nonzeros
            label_counts += batch_label_counts[0]
            pixel_count += seg.shape[2] * seg.shape[3]
        label_fracs = (label_counts.cpu().float() / pixel_count)[:, None, None]
        numpy.save(os.path.join(outdir, 'label_fracs.npy'), label_fracs)

    skip_threshold = 1e-4
    skip_labels = set(i.item()
        for i in (label_fracs.view(-1) < skip_threshold).nonzero().view(-1))

    for layer in progress(model.retained_features().keys(), desc='CQ layers'):
        if cached_cond_quantiles.get(layer, None) is not None:
            conditional_quantiles[layer] = cached_cond_quantiles[layer]
            continue

        for i, batch in enumerate(progress(segloader, desc='Condquant')):
            seg, batch_label_counts, _, imshape = (
                    segrunner.run_and_segment_batch(
                         batch, model, want_bincount=True, want_rgb=True))
            bc = batch_label_counts.cpu()
            batch_label_counts = batch_label_counts.to(device)
            features = model.retained_features()
            # Accumulate bincounts and identify nonzeros
            label_counts += batch_label_counts[0]
            pixel_count += seg.shape[2] * seg.shape[3]
            batch_labels = bc[0].nonzero()[:,0]
            batch_categories = labelcat[batch_labels].max(0)[0]
            cpu_seg = None
            value = features[layer]
            if layer not in upsample_grids:
                upsample_grids[layer] = upsample_grid(value.shape[2:],
                        seg.shape[2:], imshape,
                        scale_offset=scale_offset_map.get(layer, None)
                            if scale_offset_map is not None else None,
                        dtype=value.dtype, device=value.device)
            if layer not in conditional_quantiles:
                conditional_quantiles[layer] = RunningConditionalQuantile(
                        resolution=2048)
            upsampled = torch.nn.functional.grid_sample(value,
                    upsample_grids[layer], padding_mode='border').view(
                            value.shape[1], -1)
            conditional_quantiles[layer].add(('all',), upsampled.t())
            cpu_upsampled = None
            for label in batch_labels.tolist():
                if label in skip_labels:
                    continue
                label_key = ('label', label)
                if label_key in common_conditions:
                    imask = (seg == label).max(dim=1)[0].view(-1)
                    intersected = upsampled[:, imask]
                    conditional_quantiles[layer].add(('label', label),
                            intersected.t())
                else:
                    if cpu_seg is None:
                        cpu_seg = seg.cpu()
                    if cpu_upsampled is None:
                        cpu_upsampled = upsampled.cpu()
                    imask = (cpu_seg == label).max(dim=1)[0].view(-1)
                    intersected = cpu_upsampled[:, imask]
                    conditional_quantiles[layer].add(('label', label),
                            intersected.t())
            if num_categories > 1:
                for cat in batch_categories.nonzero()[:,0]:
                    conditional_quantiles[layer].add(('cat', cat.item()),
                            upsampled.t())
            # Move the most common conditions to the GPU.
            if i and not i & (i - 1):  # if i is a power of 2:
                cq = conditional_quantiles[layer]
                common_conditions = set(cq.most_common_conditions(64))
                cq.to_('cpu', [k for k in cq.running_quantiles.keys()
                        if k not in common_conditions])
        # When a layer is done, get it off the GPU
        conditional_quantiles[layer].to_('cpu')

    label_fracs = (label_counts.cpu().float() / pixel_count)[:, None, None]

    for cq in conditional_quantiles.values():
        cq.to_('cpu')

    for layer in conditional_quantiles:
        save_state_dict(conditional_quantiles[layer],
            os.path.join(outdir, safe_dir_name(layer), 'cond_quantiles.npz'))
    numpy.save(os.path.join(outdir, 'label_fracs.npy'), label_fracs)

    return conditional_quantiles, label_fracs


def collect_maxiou(outdir, model, segloader, segrunner):
    '''
    Returns maxiou and maxiou_level across the data set, one per layer.

    This is a performance-sensitive function.  Best performance is
    achieved with a counting scheme which assumes a segloader with
    batch_size 1.
    '''
    device = next(model.parameters()).device
    conditional_quantiles, label_fracs = collect_cond_quantiles(
            outdir, model, segloader, segrunner)

    labelcat, categories = segrunner.get_label_and_category_names()
    label_category = [categories.index(c) if c in categories else 0
                for l, c in labelcat]
    num_labels, num_categories = (len(n) for n in [labelcat, categories])

    label_list = [('label', i) for i in range(num_labels)]
    category_list = [('all',)] if num_categories <= 1 else (
            [('cat', i) for i in range(num_categories)])
    max_iou, max_iou_level, max_iou_quantile = {}, {}, {}
    fracs = torch.logspace(-3, 0, 100)
    progress = default_progress()
    for layer, cq in progress(conditional_quantiles.items(), desc='Maxiou'):
        levels = cq.conditional(('all',)).quantiles(1 - fracs)
        denoms = 1 - cq.collected_normalize(category_list, levels)
        isects = (1 - cq.collected_normalize(label_list, levels)) * label_fracs
        unions = label_fracs + denoms[label_category, :, :] - isects
        iou = isects / unions
        # TODO: erase any for which threshold is bad
        max_iou[layer], level_bucket = iou.max(2)
        max_iou_level[layer] = levels[
                torch.arange(levels.shape[0])[None,:], level_bucket]
        max_iou_quantile[layer] = fracs[level_bucket]
    for layer in model.retained_features():
        numpy.savez(os.path.join(outdir, safe_dir_name(layer), 'max_iou.npz'),
            max_iou=max_iou[layer].cpu().numpy(),
            max_iou_level=max_iou_level[layer].cpu().numpy(),
            max_iou_quantile=max_iou_quantile[layer].cpu().numpy())
    return (max_iou, max_iou_level, max_iou_quantile)

def collect_iqr(outdir, model, segloader, segrunner):
    '''
    Returns iqr and iqr_level.

    This is a performance-sensitive function.  Best performance is
    achieved with a counting scheme which assumes a segloader with
    batch_size 1.
    '''
    max_iqr, max_iqr_level, max_iqr_quantile, max_iqr_iou  = {}, {}, {}, {}
    max_iqr_agreement = {}
    found_all = True
    for layer in model.retained_features():
        filename = os.path.join(outdir, safe_dir_name(layer), 'iqr.npz')
        if os.path.isfile(filename):
            data = numpy.load(filename)
            max_iqr[layer] = torch.from_numpy(data['max_iqr'])
            max_iqr_level[layer] = torch.from_numpy(data['max_iqr_level'])
            max_iqr_quantile[layer] = torch.from_numpy(data['max_iqr_quantile'])
            max_iqr_iou[layer] = torch.from_numpy(data['max_iqr_iou'])
            max_iqr_agreement[layer] = torch.from_numpy(
                    data['max_iqr_agreement'])
        else:
            found_all = False
    if found_all:
        return (max_iqr, max_iqr_level, max_iqr_quantile, max_iqr_iou,
            max_iqr_agreement)


    device = next(model.parameters()).device
    conditional_quantiles, label_fracs = collect_cond_quantiles(
            outdir, model, segloader, segrunner)

    labelcat, categories = segrunner.get_label_and_category_names()
    label_category = [categories.index(c) if c in categories else 0
                for l, c in labelcat]
    num_labels, num_categories = (len(n) for n in [labelcat, categories])

    label_list = [('label', i) for i in range(num_labels)]
    category_list = [('all',)] if num_categories <= 1 else (
            [('cat', i) for i in range(num_categories)])
    full_mi, full_je, full_iqr = {}, {}, {}
    fracs = torch.logspace(-3, 0, 100)
    progress = default_progress()
    for layer, cq in progress(conditional_quantiles.items(), desc='IQR'):
        levels = cq.conditional(('all',)).quantiles(1 - fracs)
        truth = label_fracs.to(device)
        preds = (1 - cq.collected_normalize(category_list, levels)
                )[label_category, :, :].to(device)
        cond_isects = 1 - cq.collected_normalize(label_list, levels).to(device)
        isects = cond_isects * truth
        unions = truth + preds - isects
        arr = torch.empty(size=(2, 2) + isects.shape, dtype=isects.dtype,
                device=device)
        arr[0, 0] = isects
        arr[0, 1] = preds - isects
        arr[1, 0] = truth - isects
        arr[1, 1] = 1 - unions
        arr.clamp_(0, 1)
        mi = mutual_information(arr)
        mi[:,:,-1] = 0  # at the 1.0 quantile should be no MI.
        # Don't trust mi when less than label_frac is less than 1e-3,
        # because our samples are too small.
        mi[label_fracs.view(-1) < 1e-3, :, :] = 0
        je = joint_entropy(arr)
        iqr = mi / je
        iqr[torch.isnan(iqr)] = 0 # Zero out any 0/0
        full_mi[layer] = mi.cpu()
        full_je[layer] = je.cpu()
        full_iqr[layer] = iqr.cpu()
        del mi, je
        agreement = isects + arr[1, 1]
        # When optimizing, maximize only over those pairs where the
        # unit is positively correlated with the label, and where the
        # threshold level is positive
        positive_iqr = iqr
        positive_iqr[agreement <= 0.8] = 0
        positive_iqr[(levels <= 0.0)[None, :, :].expand(positive_iqr.shape)] = 0
        # TODO: erase any for which threshold is bad
        maxiqr, level_bucket = positive_iqr.max(2)
        max_iqr[layer] = maxiqr.cpu()
        max_iqr_level[layer] = levels.to(device)[
                torch.arange(levels.shape[0])[None,:], level_bucket].cpu()
        max_iqr_quantile[layer] = fracs.to(device)[level_bucket].cpu()
        max_iqr_agreement[layer] = agreement[
                torch.arange(agreement.shape[0])[:, None],
                torch.arange(agreement.shape[1])[None, :],
                level_bucket].cpu()

        # Compute the iou that goes with each maximized iqr
        matching_iou = (isects[
                torch.arange(isects.shape[0])[:, None],
                torch.arange(isects.shape[1])[None, :],
                level_bucket] /
            unions[
                torch.arange(unions.shape[0])[:, None],
                torch.arange(unions.shape[1])[None, :],
                level_bucket])
        matching_iou[torch.isnan(matching_iou)] = 0
        max_iqr_iou[layer] = matching_iou.cpu()
    for layer in model.retained_features():
        numpy.savez(os.path.join(outdir, safe_dir_name(layer), 'iqr.npz'),
            max_iqr=max_iqr[layer].cpu().numpy(),
            max_iqr_level=max_iqr_level[layer].cpu().numpy(),
            max_iqr_quantile=max_iqr_quantile[layer].cpu().numpy(),
            max_iqr_iou=max_iqr_iou[layer].cpu().numpy(),
            max_iqr_agreement=max_iqr_agreement[layer].cpu().numpy(),
            full_mi=full_mi[layer].cpu().numpy(),
            full_je=full_je[layer].cpu().numpy(),
            full_iqr=full_iqr[layer].cpu().numpy())
    return (max_iqr, max_iqr_level, max_iqr_quantile, max_iqr_iou,
            max_iqr_agreement)

def mutual_information(arr):
    total = 0
    for j in range(arr.shape[0]):
        for k in range(arr.shape[1]):
            joint = arr[j,k]
            ind = arr[j,:].sum(dim=0) * arr[:,k].sum(dim=0)
            term = joint * (joint / ind).log()
            term[torch.isnan(term)] = 0
            total += term
    return total.clamp_(0)

def joint_entropy(arr):
    total = 0
    for j in range(arr.shape[0]):
        for k in range(arr.shape[1]):
            joint = arr[j,k]
            term = joint * joint.log()
            term[torch.isnan(term)] = 0
            total += term
    return (-total).clamp_(0)

def information_quality_ratio(arr):
    iqr = mutual_information(arr) / joint_entropy(arr)
    iqr[torch.isnan(iqr)] = 0
    return iqr

def collect_covariance(outdir, model, segloader, segrunner):
    '''
    Returns label_mean, label_variance, unit_mean, unit_variance,
    and cross_covariance across the data set.

    label_mean, label_variance (independent of model):
        treating the label as a one-hot, each label's mean and variance.
    unit_mean, unit_variance (one per layer): for each feature channel,
        the mean and variance of the activations in that channel.
    cross_covariance (one per layer): the cross covariance between the
        labels and the units in the layer.
    '''
    device = next(model.parameters()).device
    cached_covariance = {
            layer: load_covariance_if_present(os.path.join(outdir,
                safe_dir_name(layer)), 'covariance.npz', device=device)
            for layer in model.retained_features() }
    if all(value is not None for value in cached_covariance.values()):
        return cached_covariance
    labelcat, categories = segrunner.get_label_and_category_names()
    label_category = [categories.index(c) if c in categories else 0
                for l, c in labelcat]
    num_labels, num_categories = (len(n) for n in [labelcat, categories])

    # Running covariance
    cov = {}
    progress = default_progress()
    scale_offset_map = getattr(model, 'scale_offset', None)
    upsample_grids = {}
    for i, batch in enumerate(progress(segloader, desc='Covariance')):
        seg, _, _, imshape = segrunner.run_and_segment_batch(batch, model,
                want_rgb=True)
        features = model.retained_features()
        ohfeats = multilabel_onehot(seg, num_labels, ignore_index=0)
        # Accumulate bincounts and identify nonzeros
        for key, value in features.items():
            if key not in upsample_grids:
                upsample_grids[key] = upsample_grid(value.shape[2:],
                        seg.shape[2:], imshape,
                        scale_offset=scale_offset_map.get(key, None)
                            if scale_offset_map is not None else None,
                        dtype=value.dtype, device=value.device)
            upsampled = torch.nn.functional.grid_sample(value,
                    upsample_grids[key].expand(
                        (value.shape[0],) + upsample_grids[key].shape[1:]),
                    padding_mode='border')
            if key not in cov:
                cov[key] = RunningCrossCovariance()
            cov[key].add(upsampled, ohfeats)
    for layer in cov:
        save_state_dict(cov[layer],
                os.path.join(outdir, safe_dir_name(layer), 'covariance.npz'))
    return cov

def multilabel_onehot(labels, num_labels, dtype=None, ignore_index=None):
    '''
    Converts a multilabel tensor into a onehot tensor.

    The input labels is a tensor of shape (samples, multilabels, y, x).
    The output is a tensor of shape (samples, num_labels, y, x).
    If ignore_index is specified, labels with that index are ignored.
    Each x in labels should be 0 <= x < num_labels, or x == ignore_index.
    '''
    assert ignore_index is None or ignore_index <= 0
    if dtype is None:
        dtype = torch.float
    device = labels.device
    chans = num_labels + (-ignore_index if ignore_index else 0)
    outshape = (labels.shape[0], chans) + labels.shape[2:]
    result = torch.zeros(outshape, device=device, dtype=dtype)
    if ignore_index and ignore_index < 0:
        labels = labels + (-ignore_index)
    result.scatter_(1, labels, 1)
    if ignore_index and ignore_index < 0:
        result = result[:, -ignore_index:]
    elif ignore_index is not None:
        result[:, ignore_index] = 0
    return result

def load_npy_if_present(outdir, filename, device):
    filepath = os.path.join(outdir, filename)
    if os.path.isfile(filepath):
        data = numpy.load(filepath)
        return torch.from_numpy(data).to(device)
    return 0

def load_npz_if_present(outdir, filename, varnames, device):
    filepath = os.path.join(outdir, filename)
    if os.path.isfile(filepath):
        data = numpy.load(filepath)
        numpy_result = [data[n] for n in varnames]
        return tuple(torch.from_numpy(data).to(device) for data in numpy_result)
    return None

def load_quantile_if_present(outdir, filename, device):
    filepath = os.path.join(outdir, filename)
    if os.path.isfile(filepath):
        data = numpy.load(filepath)
        result = RunningQuantile(state=data)
        result.to_(device)
        return result
    return None

def load_conditional_quantile_if_present(outdir, filename):
    filepath = os.path.join(outdir, filename)
    if os.path.isfile(filepath):
        data = numpy.load(filepath)
        result = RunningConditionalQuantile(state=data)
        return result
    return None

def load_topk_if_present(outdir, filename, device):
    filepath = os.path.join(outdir, filename)
    if os.path.isfile(filepath):
        data = numpy.load(filepath)
        result = RunningTopK(state=data)
        result.to_(device)
        return result
    return None

def load_covariance_if_present(outdir, filename, device):
    filepath = os.path.join(outdir, filename)
    if os.path.isfile(filepath):
        data = numpy.load(filepath)
        result = RunningCrossCovariance(state=data)
        result.to_(device)
        return result
    return None

def save_state_dict(obj, filepath):
    dirname = os.path.dirname(filepath)
    os.makedirs(dirname, exist_ok=True)
    dic = obj.state_dict()
    numpy.savez(filepath, **dic)

def upsample_grid(data_shape, target_shape, input_shape=None,
        scale_offset=None, dtype=torch.float, device=None):
    '''Prepares a grid to use with grid_sample to upsample a batch of
    features in data_shape to the target_shape. Can use scale_offset
    and input_shape to center the grid in a nondefault way: scale_offset
    maps feature pixels to input_shape pixels, and it is assumed that
    the target_shape is a uniform downsampling of input_shape.'''
    # Default is that nothing is resized.
    if target_shape is None:
        target_shape = data_shape
    # Make a default scale_offset to fill the image if there isn't one
    if scale_offset is None:
        scale = tuple(float(ts) / ds
                for ts, ds in zip(target_shape, data_shape))
        offset = tuple(0.5 * s - 0.5 for s in scale)
    else:
        scale, offset = (v for v in zip(*scale_offset))
        # Handle downsampling for different input vs target shape.
        if input_shape is not None:
            scale = tuple(s * (ts - 1) / (ns - 1)
                    for s, ns, ts in zip(scale, input_shape, target_shape))
            offset = tuple(o * (ts - 1) / (ns - 1)
                    for o, ns, ts in zip(offset, input_shape, target_shape))
    # Pytorch needs target coordinates in terms of source coordinates [-1..1]
    ty, tx = (((torch.arange(ts, dtype=dtype, device=device) - o)
                  * (2 / (s * (ss - 1))) - 1)
        for ts, ss, s, o, in zip(target_shape, data_shape, scale, offset))
    # Whoa, note that grid_sample reverses the order y, x -> x, y.
    grid = torch.stack(
        (tx[None,:].expand(target_shape), ty[:,None].expand(target_shape)),2
       )[None,:,:,:].expand((1, target_shape[0], target_shape[1], 2))
    return grid

def safe_dir_name(filename):
    keepcharacters = (' ','.','_','-')
    return ''.join(c
            for c in filename if c.isalnum() or c in keepcharacters).rstrip()

bargraph_palette = [
    ('#4B4CBF', '#B6B6F2'),
    ('#55B05B', '#B6F2BA'),
    ('#50BDAC', '#A5E5DB'),
    ('#81C679', '#C0FF9B'),
    ('#F0883B', '#F2CFB6'),
    ('#D4CF24', '#F2F1B6'),
    ('#D92E2B', '#F2B6B6'),
    ('#AB6BC6', '#CFAAFF'),
]

def make_svg_bargraph(labels, heights, categories,
        barheight=100, barwidth=12, show_labels=True, filename=None):
    # if len(labels) == 0:
    #     return # Nothing to do
    unitheight = float(barheight) / max(max(heights, default=1), 1)
    textheight = barheight if show_labels else 0
    labelsize = float(barwidth)
    gap = float(barwidth) / 4
    textsize = barwidth + gap
    rollup = max(heights, default=1)
    textmargin = float(labelsize) * 2 / 3
    leftmargin = 32
    rightmargin = 8
    svgwidth = len(heights) * (barwidth + gap) + 2 * leftmargin + rightmargin
    svgheight = barheight + textheight

    # create an SVG XML element
    svg = et.Element('svg', width=str(svgwidth), height=str(svgheight),
            version='1.1', xmlns='http://www.w3.org/2000/svg')

    # Draw the bar graph
    basey = svgheight - textheight
    x = leftmargin
    # Add units scale on left
    if len(heights):
        for h in [1, (max(heights) + 1) // 2, max(heights)]:
            et.SubElement(svg, 'text', x='0', y='0',
                style=('font-family:sans-serif;font-size:%dpx;' +
                'text-anchor:end;alignment-baseline:hanging;' +
                'transform:translate(%dpx, %dpx);') %
                (textsize, x - gap, basey - h * unitheight)).text = str(h)
        et.SubElement(svg, 'text', x='0', y='0',
                style=('font-family:sans-serif;font-size:%dpx;' +
                'text-anchor:middle;' +
                'transform:translate(%dpx, %dpx) rotate(-90deg)') %
                (textsize, x - gap - textsize, basey - h * unitheight / 2)
                ).text = 'units'
    # Draw big category background rectangles
    for catindex, (cat, catcount) in enumerate(categories):
        if not catcount:
            continue
        et.SubElement(svg, 'rect', x=str(x), y=str(basey - rollup * unitheight),
                width=(str((barwidth + gap) * catcount - gap)),
                height = str(rollup*unitheight),
                fill=bargraph_palette[catindex % len(bargraph_palette)][1])
        x += (barwidth + gap) * catcount
    # Draw small bars as well as 45degree text labels
    x = leftmargin
    catindex = -1
    catcount = 0
    for label, height in zip(labels, heights):
        while not catcount and catindex <= len(categories):
            catindex += 1
            catcount = categories[catindex][1]
            color = bargraph_palette[catindex % len(bargraph_palette)][0]
        et.SubElement(svg, 'rect', x=str(x), y=str(basey-(height * unitheight)),
                width=str(barwidth), height=str(height * unitheight),
                fill=color)
        x += barwidth
        if show_labels:
            et.SubElement(svg, 'text', x='0', y='0',
                style=('font-family:sans-serif;font-size:%dpx;text-anchor:end;'+
                'transform:translate(%dpx, %dpx) rotate(-45deg);') %
                (labelsize, x, basey + textmargin)).text = readable(label)
        x += gap
        catcount -= 1
    # Text labels for each category
    x = leftmargin
    for cat, catcount in categories:
        if not catcount:
            continue
        et.SubElement(svg, 'text', x='0', y='0',
            style=('font-family:sans-serif;font-size:%dpx;text-anchor:end;'+
            'transform:translate(%dpx, %dpx) rotate(-90deg);') %
            (textsize, x + (barwidth + gap) * catcount - gap,
                basey - rollup * unitheight + gap)).text = '%d %s' % (
                    catcount, readable(cat + ('s' if catcount != 1 else '')))
        x += (barwidth + gap) * catcount
    # Output - this is the bare svg.
    result = et.tostring(svg)
    if filename:
        f = open(filename, 'wb')
        # When writing to a file a special header is needed.
        f.write(''.join([
            '<?xml version=\"1.0\" standalone=\"no\"?>\n',
            '<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n',
            '\"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n']
            ).encode('utf-8'))
        f.write(result)
        f.close()
    return result

readable_replacements = [(re.compile(r[0]), r[1]) for r in [
    (r'-[sc]$', ''),
    (r'_', ' '),
    ]]

def readable(label):
    for pattern, subst in readable_replacements:
        label= re.sub(pattern, subst, label)
    return label

def reverse_normalize_from_transform(transform):
    '''
    Crawl around the transforms attached to a dataset looking for a
    Normalize transform, and return it a corresponding ReverseNormalize,
    or None if no normalization is found.
    '''
    if isinstance(transform, torchvision.transforms.Normalize):
        return ReverseNormalize(transform.mean, transform.std)
    t = getattr(transform, 'transform', None)
    if t is not None:
        return reverse_normalize_from_transform(t)
    transforms = getattr(transform, 'transforms', None)
    if transforms is not None:
        for t in reversed(transforms):
            result = reverse_normalize_from_transform(t)
            if result is not None:
                return result
    return None

class ReverseNormalize:
    '''
    Applies the reverse of torchvision.transforms.Normalize.
    '''
    def __init__(self, mean, stdev):
        mean = numpy.array(mean)
        stdev = numpy.array(stdev)
        self.mean = torch.from_numpy(mean)[None,:,None,None].float()
        self.stdev = torch.from_numpy(stdev)[None,:,None,None].float()
    def __call__(self, data):
        device = data.device
        return data.mul(self.stdev.to(device)).add_(self.mean.to(device))

class ImageOnlySegRunner:
    def __init__(self, dataset, recover_image=None):
        if recover_image is None:
            recover_image = reverse_normalize_from_transform(dataset)
        self.recover_image = recover_image
        self.dataset = dataset
    def get_label_and_category_names(self):
        return [('-', '-')], ['-']
    def run_and_segment_batch(self, batch, model,
            want_bincount=False, want_rgb=False):
        [im] = batch
        device = next(model.parameters()).device
        if want_rgb:
            rgb = self.recover_image(im.clone()
                ).permute(0, 2, 3, 1).mul_(255).clamp(0, 255).byte()
        else:
            rgb = None
        # Stubs for seg and bc
        seg = torch.zeros(im.shape[0], 1, 1, 1, dtype=torch.long)
        bc = torch.ones(im.shape[0], 1, dtype=torch.long)
        # Run the model.
        model(im.to(device))
        return seg, bc, rgb, im.shape[2:]

class ClassifierSegRunner:
    def __init__(self, dataset, recover_image=None):
        # The dataset contains explicit segmentations
        if recover_image is None:
            recover_image = reverse_normalize_from_transform(dataset)
        self.recover_image = recover_image
        self.dataset = dataset
    def get_label_and_category_names(self):
        catnames = self.dataset.categories
        label_and_cat_names = [(readable(label),
            catnames[self.dataset.label_category[i]])
                for i, label in enumerate(self.dataset.labels)]
        return label_and_cat_names, catnames
    def run_and_segment_batch(self, batch, model,
            want_bincount=False, want_rgb=False):
        '''
        Runs the dissected model on one batch of the dataset, and
        returns a multilabel semantic segmentation for the data.
        Given a batch of size (n, c, y, x) the segmentation should
        be a (long integer) tensor of size (n, d, y//r, x//r) where
        d is the maximum number of simultaneous labels given to a pixel,
        and where r is some (optional) resolution reduction factor.
        In the segmentation returned, the label `0` is reserved for
        the background "no-label".

        In addition to the segmentation, bc, rgb, and shape are returned
        where bc is a per-image bincount counting returned label pixels,
        rgb is a viewable (n, y, x, rgb) byte image tensor for the data
        for visualizations (reversing normalizations, for example), and
        shape is the (y, x) size of the data.  If want_bincount or
        want_rgb are False, those return values may be None.
        '''
        im, seg, bc = batch
        device = next(model.parameters()).device
        if want_rgb:
            rgb = self.recover_image(im.clone()
                ).permute(0, 2, 3, 1).mul_(255).clamp(0, 255).byte()
        else:
            rgb = None
        # Run the model.
        model(im.to(device))
        return seg, bc, rgb, im.shape[2:]

class GeneratorSegRunner:
    def __init__(self, segmenter):
        # The segmentations are given by an algorithm
        if segmenter is None:
            segmenter = UnifiedParsingSegmenter(segsizes=[256], segdiv='quad')
        self.segmenter = segmenter
        self.num_classes = len(segmenter.get_label_and_category_names()[0])
    def get_label_and_category_names(self):
        return self.segmenter.get_label_and_category_names()
    def run_and_segment_batch(self, batch, model,
            want_bincount=False, want_rgb=False):
        '''
        Runs the dissected model on one batch of the dataset, and
        returns a multilabel semantic segmentation for the data.
        Given a batch of size (n, c, y, x) the segmentation should
        be a (long integer) tensor of size (n, d, y//r, x//r) where
        d is the maximum number of simultaneous labels given to a pixel,
        and where r is some (optional) resolution reduction factor.
        In the segmentation returned, the label `0` is reserved for
        the background "no-label".

        In addition to the segmentation, bc, rgb, and shape are returned
        where bc is a per-image bincount counting returned label pixels,
        rgb is a viewable (n, y, x, rgb) byte image tensor for the data
        for visualizations (reversing normalizations, for example), and
        shape is the (y, x) size of the data.  If want_bincount or
        want_rgb are False, those return values may be None.
        '''
        device = next(model.parameters()).device
        z_batch = batch[0]
        tensor_images = model(z_batch.to(device))
        seg = self.segmenter.segment_batch(tensor_images, downsample=2)
        if want_bincount:
            index = torch.arange(z_batch.shape[0],
                    dtype=torch.long, device=device)
            bc = (seg + index[:, None, None, None] * self.num_classes).view(-1
                ).bincount(minlength=z_batch.shape[0] * self.num_classes)
            bc = bc.view(z_batch.shape[0], self.num_classes)
        else:
            bc = None
        if want_rgb:
            images = ((tensor_images + 1) / 2 * 255)
            rgb = images.permute(0, 2, 3, 1).clamp(0, 255).byte()
        else:
            rgb = None
        return seg, bc, rgb, tensor_images.shape[2:]