Spaces:
Sleeping
Sleeping
File size: 5,401 Bytes
f360117 94aebbe f360117 93f11bd a22a221 f360117 e9eec7b f360117 e9eec7b f360117 00de940 f360117 00de940 f360117 b96b83f 4f7211d fa3732a f360117 b96b83f 93f11bd f360117 74bf4ec 00de940 f360117 95d570a a57acc8 95d570a b96b83f 4f7211d a57acc8 f360117 b96b83f 93f11bd f360117 74bf4ec f360117 00de940 f360117 00de940 f360117 00de940 f360117 00de940 f360117 00de940 f360117 00de940 f360117 00de940 f360117 00de940 f360117 eeadab2 f360117 00de940 f360117 a57acc8 f360117 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
DEVICE = 'cpu'
import gradio as gr
import numpy as np
from sklearn.svm import LinearSVC
from sklearn import preprocessing
import pandas as pd
import random
import time
import replicate
import torch
from urllib.request import urlopen
from PIL import Image
import requests
from io import BytesIO, StringIO
prompt_list = [p for p in list(set(
pd.read_csv('./twitter_prompts.csv').iloc[:, 1].tolist())) if type(p) == str]
calibrate_prompts = [
"4k photo",
'surrealist art',
# 'a psychedelic, fractal view',
'a beautiful collage',
'abstract art',
'an eldritch image',
'a sketch',
# 'a city full of darkness and graffiti',
'',
]
start_time = time.time()
# TODO add to state instead of shared across all
glob_idx = 0
def next_image(embs, ys):
global glob_idx
glob_idx = glob_idx + 1
with torch.no_grad():
if len(calibrate_prompts) > 0:
print('######### Calibrating with sample prompts #########')
prompt = calibrate_prompts.pop(0)
print(prompt)
output = replicate.run(
"rynmurdock/zahir:42c58addd49ab57f1e309f0b9a0f271f483bbef0470758757c623648fe989e42",
input={"prompt": prompt,}
)
response = requests.get(output['file1'])
image = Image.open(BytesIO(response.content))
embs.append(torch.tensor([float(i) for i in urlopen(output['file2']).read().decode('utf-8').split(', ')]).unsqueeze(0))
return image, embs, ys
else:
print('######### Roaming #########')
# sample only as many negatives as there are positives
indices = range(len(ys))
pos_indices = [i for i in indices if ys[i] == 1]
neg_indices = [i for i in indices if ys[i] == 0]
lower = min(len(pos_indices), len(neg_indices))
neg_indices = random.sample(neg_indices, lower)
pos_indices = random.sample(pos_indices, lower)
cut_embs = [embs[i] for i in neg_indices] + [embs[i] for i in pos_indices]
cut_ys = [ys[i] for i in neg_indices] + [ys[i] for i in pos_indices]
feature_embs = torch.stack([e[0].detach().cpu() for e in cut_embs])
scaler = preprocessing.StandardScaler().fit(feature_embs)
feature_embs = scaler.transform(feature_embs)
print(np.array(feature_embs).shape, np.array(ys).shape)
lin_class = LinearSVC(max_iter=50000, dual='auto', class_weight='balanced').fit(np.array(feature_embs), np.array(cut_ys))
lin_class.coef_ = torch.tensor(lin_class.coef_, dtype=torch.double)
lin_class.coef_ = (lin_class.coef_.flatten() / (lin_class.coef_.flatten().norm())).unsqueeze(0)
rng_prompt = random.choice(prompt_list)
w = 1# if len(embs) % 2 == 0 else 0
im_emb = w * lin_class.coef_.to(device=DEVICE, dtype=torch.float16)
prompt= 'an image' if glob_idx % 2 == 0 else rng_prompt
print(prompt)
im_emb_st = str(im_emb[0].cpu().detach().tolist())[1:-1]
output = replicate.run(
"rynmurdock/zahir:42c58addd49ab57f1e309f0b9a0f271f483bbef0470758757c623648fe989e42",
input={"prompt": prompt, 'im_emb': im_emb_st}
)
response = requests.get(output['file1'])
image = Image.open(BytesIO(response.content))
im_emb = torch.tensor([float(i) for i in urlopen(output['file2']).read().decode('utf-8').split(', ')]).unsqueeze(0)
embs.append(im_emb)
torch.save(lin_class.coef_, f'./{start_time}.pt')
return image, embs, ys
def start(_):
return [
gr.Button(value='Like', interactive=True),
gr.Button(value='Neither', interactive=True),
gr.Button(value='Dislike', interactive=True),
gr.Button(value='Start', interactive=False),
next_image()
]
def choose(choice, embs, ys):
if choice == 'Like':
choice = 1
elif choice == 'Neither':
_ = embs.pop(-1)
return next_image(embs, ys)
else:
choice = 0
ys.append(choice)
return next_image(embs, ys)
css = "div#output-image {height: 768px !important; width: 768px !important; margin:auto;}"
with gr.Blocks(css=css) as demo:
embs = gr.State([])
ys = gr.State([])
with gr.Row(elem_id='output-image'):
img = gr.Image(interactive=False, elem_id='output-image',)
with gr.Row(equal_height=True):
b3 = gr.Button(value='Dislike', interactive=False,)
b2 = gr.Button(value='Neither', interactive=False,)
b1 = gr.Button(value='Like', interactive=False,)
b1.click(
choose,
[b1, embs, ys],
[img, embs, ys]
)
b2.click(
choose,
[b2, embs, ys],
[img, embs, ys]
)
b3.click(
choose,
[b3, embs, ys],
[img, embs, ys]
)
with gr.Row():
b4 = gr.Button(value='Start')
b4.click(start,
[b4, embs, ys],
[b1, b2, b3, b4, img,])
with gr.Row():
html = gr.HTML('''<div style='text-align:center; font-size:32'>You will callibrate for several prompts and then roam.</ div>''')
demo.launch() # Share your demo with just 1 extra parameter π |