Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" DistilBERT model configuration """ | |
from __future__ import (absolute_import, division, print_function, | |
unicode_literals) | |
import sys | |
import json | |
import logging | |
from io import open | |
from .configuration_utils import PretrainedConfig | |
logger = logging.getLogger(__name__) | |
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
'distilbert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-uncased-config.json", | |
'distilbert-base-uncased-distilled-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-uncased-distilled-squad-config.json" | |
} | |
class DistilBertConfig(PretrainedConfig): | |
pretrained_config_archive_map = DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP | |
def __init__(self, | |
vocab_size_or_config_json_file=30522, | |
max_position_embeddings=512, | |
sinusoidal_pos_embds=True, | |
n_layers=6, | |
n_heads=12, | |
dim=768, | |
hidden_dim=4*768, | |
dropout=0.1, | |
attention_dropout=0.1, | |
activation='gelu', | |
initializer_range=0.02, | |
tie_weights_=True, | |
qa_dropout=0.1, | |
seq_classif_dropout=0.2, | |
**kwargs): | |
super(DistilBertConfig, self).__init__(**kwargs) | |
if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2 | |
and isinstance(vocab_size_or_config_json_file, unicode)): | |
with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader: | |
json_config = json.loads(reader.read()) | |
for key, value in json_config.items(): | |
self.__dict__[key] = value | |
elif isinstance(vocab_size_or_config_json_file, int): | |
self.vocab_size = vocab_size_or_config_json_file | |
self.max_position_embeddings = max_position_embeddings | |
self.sinusoidal_pos_embds = sinusoidal_pos_embds | |
self.n_layers = n_layers | |
self.n_heads = n_heads | |
self.dim = dim | |
self.hidden_dim = hidden_dim | |
self.dropout = dropout | |
self.attention_dropout = attention_dropout | |
self.activation = activation | |
self.initializer_range = initializer_range | |
self.tie_weights_ = tie_weights_ | |
self.qa_dropout = qa_dropout | |
self.seq_classif_dropout = seq_classif_dropout | |
else: | |
raise ValueError("First argument must be either a vocabulary size (int)" | |
" or the path to a pretrained model config file (str)") | |
def hidden_size(self): | |
return self.dim | |
def num_attention_heads(self): | |
return self.n_heads | |
def num_hidden_layers(self): | |
return self.n_layers | |