import os os.system('pip install -q git+https://github.com/huggingface/transformers.git') os.system('pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu') from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM import torch import gradio as gr import re device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class GUI: def query(self,query,modelo="flan-t5-small",tokens=100): options="" tok_len=tokens t5query = f"""Question: "{query}" Context: {options}""" if (modelo=="flan-t5-small" or modelo=="flan-t5-large"): tokenizer = AutoTokenizer.from_pretrained("google/{}".format(modelo)) model = AutoModelForSeq2SeqLM.from_pretrained("google/{}".format(modelo)).to(device) inputs = tokenizer(t5query, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_new_tokens=tok_len) else: model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-125M").to(device) tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M") input_ids = tokenizer(t5query, return_tensors="pt").to(device) outputs = model.generate(**input_ids, do_sample=True, max_length=tok_len) generation=tokenizer.batch_decode(outputs, skip_special_tokens=True) return '\n'.join(generation) def begin(self,question,modelo,tokens): results = app.query(question,tokens) return results app = GUI() title = "Get answers with questions with Flan-T5" description = "Results will show up in a few seconds." article="More info ruslanmv.com
" css = """.output_image, .input_image {height: 600px !important}""" iface = gr.Interface(fn=app.begin, inputs=[ gr.Textbox(label="Question"), gr.Radio(["flan-t5-small", "flan-t5-large","gpt-neo-125M"],label="Model",value="flan-t5-small"), gr.Slider(30, 200, value=100, step = 1,label="Max Tokens"),], outputs = gr.Text(label="Answer Summary"), title=title, description=description, article=article, css=css, analytics_enabled = True ,enable_queue=True) iface.launch(inline=False, share=False, debug=False)