Testdemo / main /utils_data.py
rupal009's picture
Upload 81 files
53b645d verified
raw
history blame
5.73 kB
from functools import partial
import numpy as np
import torch
import pytorch_lightning as pl
from torch.utils.data import DataLoader, Dataset
import os, sys
os.chdir(sys.path[0])
sys.path.append("..")
from lvdm.data.base import Txt2ImgIterableBaseDataset
from utils.utils import instantiate_from_config
def worker_init_fn(_):
worker_info = torch.utils.data.get_worker_info()
dataset = worker_info.dataset
worker_id = worker_info.id
if isinstance(dataset, Txt2ImgIterableBaseDataset):
split_size = dataset.num_records // worker_info.num_workers
# reset num_records to the true number to retain reliable length information
dataset.sample_ids = dataset.valid_ids[worker_id * split_size:(worker_id + 1) * split_size]
current_id = np.random.choice(len(np.random.get_state()[1]), 1)
return np.random.seed(np.random.get_state()[1][current_id] + worker_id)
else:
return np.random.seed(np.random.get_state()[1][0] + worker_id)
class WrappedDataset(Dataset):
"""Wraps an arbitrary object with __len__ and __getitem__ into a pytorch dataset"""
def __init__(self, dataset):
self.data = dataset
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
class DataModuleFromConfig(pl.LightningDataModule):
def __init__(self, batch_size, train=None, validation=None, test=None, predict=None,
wrap=False, num_workers=None, shuffle_test_loader=False, use_worker_init_fn=False,
shuffle_val_dataloader=False, train_img=None,
test_max_n_samples=None):
super().__init__()
self.batch_size = batch_size
self.dataset_configs = dict()
self.num_workers = num_workers if num_workers is not None else batch_size * 2
self.use_worker_init_fn = use_worker_init_fn
if train is not None:
self.dataset_configs["train"] = train
self.train_dataloader = self._train_dataloader
if validation is not None:
self.dataset_configs["validation"] = validation
self.val_dataloader = partial(self._val_dataloader, shuffle=shuffle_val_dataloader)
if test is not None:
self.dataset_configs["test"] = test
self.test_dataloader = partial(self._test_dataloader, shuffle=shuffle_test_loader)
if predict is not None:
self.dataset_configs["predict"] = predict
self.predict_dataloader = self._predict_dataloader
self.img_loader = None
self.wrap = wrap
self.test_max_n_samples = test_max_n_samples
self.collate_fn = None
def prepare_data(self):
pass
def setup(self, stage=None):
self.datasets = dict((k, instantiate_from_config(self.dataset_configs[k])) for k in self.dataset_configs)
if self.wrap:
for k in self.datasets:
self.datasets[k] = WrappedDataset(self.datasets[k])
def _train_dataloader(self):
is_iterable_dataset = isinstance(self.datasets['train'], Txt2ImgIterableBaseDataset)
if is_iterable_dataset or self.use_worker_init_fn:
init_fn = worker_init_fn
else:
init_fn = None
loader = DataLoader(self.datasets["train"], batch_size=self.batch_size,
num_workers=self.num_workers, shuffle=False if is_iterable_dataset else True,
worker_init_fn=init_fn, collate_fn=self.collate_fn,
)
return loader
def _val_dataloader(self, shuffle=False):
if isinstance(self.datasets['validation'], Txt2ImgIterableBaseDataset) or self.use_worker_init_fn:
init_fn = worker_init_fn
else:
init_fn = None
return DataLoader(self.datasets["validation"],
batch_size=self.batch_size,
num_workers=self.num_workers,
worker_init_fn=init_fn,
shuffle=shuffle,
collate_fn=self.collate_fn,
)
def _test_dataloader(self, shuffle=False):
try:
is_iterable_dataset = isinstance(self.datasets['train'], Txt2ImgIterableBaseDataset)
except:
is_iterable_dataset = isinstance(self.datasets['test'], Txt2ImgIterableBaseDataset)
if is_iterable_dataset or self.use_worker_init_fn:
init_fn = worker_init_fn
else:
init_fn = None
# do not shuffle dataloader for iterable dataset
shuffle = shuffle and (not is_iterable_dataset)
if self.test_max_n_samples is not None:
dataset = torch.utils.data.Subset(self.datasets["test"], list(range(self.test_max_n_samples)))
else:
dataset = self.datasets["test"]
return DataLoader(dataset, batch_size=self.batch_size,
num_workers=self.num_workers, worker_init_fn=init_fn, shuffle=shuffle,
collate_fn=self.collate_fn,
)
def _predict_dataloader(self, shuffle=False):
if isinstance(self.datasets['predict'], Txt2ImgIterableBaseDataset) or self.use_worker_init_fn:
init_fn = worker_init_fn
else:
init_fn = None
return DataLoader(self.datasets["predict"], batch_size=self.batch_size,
num_workers=self.num_workers, worker_init_fn=init_fn,
collate_fn=self.collate_fn,
)