from fastapi import FastAPI, File, UploadFile, Response, HTTPException from fastapi.responses import JSONResponse, FileResponse from fastapi.middleware.cors import CORSMiddleware from PIL import Image import io import sqlite3 from pydantic import BaseModel, EmailStr from pathlib import Path from model import YOLOModel import shutil from openpyxl import Workbook from openpyxl.drawing.image import Image as ExcelImage import os yolo = YOLOModel() UPLOAD_FOLDER = Path("./uploads") UPLOAD_FOLDER.mkdir(exist_ok=True) app = FastAPI() cropped_images_dir = "cropped_images" # Initialize SQLite database def init_db(): conn = sqlite3.connect('users.db') c = conn.cursor() c.execute(''' CREATE TABLE IF NOT EXISTS users ( id INTEGER PRIMARY KEY AUTOINCREMENT, firstName TEXT NOT NULL, lastName TEXT NOT NULL, country TEXT, number TEXT, -- Phone number stored as TEXT to allow various formats email TEXT UNIQUE NOT NULL, -- Email should be unique and non-null password TEXT NOT NULL -- Password will be stored as a string (hashed ideally) ) ''') conn.commit() conn.close() init_db() class UserSignup(BaseModel): firstName: str lastName: str country: str number: str email: EmailStr password: str class UserLogin(BaseModel): email: str password: str @app.post("/signup") async def signup(user_data: UserSignup): try: conn = sqlite3.connect('users.db') c = conn.cursor() # Check if user already exists c.execute("SELECT * FROM users WHERE email = ?", (user_data.email,)) if c.fetchone(): raise HTTPException(status_code=400, detail="Email already registered") # Insert new user c.execute(""" INSERT INTO users (firstName, lastName, country, number, email, password) VALUES (?, ?, ?, ?, ?, ?) """, (user_data.firstName, user_data.lastName, user_data.country, user_data.number, user_data.email, user_data.password)) conn.commit() conn.close() return {"message": "User registered successfully", "email": user_data.email} except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.post("/login") async def login(user_data: UserLogin): try: conn = sqlite3.connect('users.db') c = conn.cursor() # Find user c.execute("SELECT * FROM users WHERE email = ? AND password = ?", (user_data.email, user_data.password)) user = c.fetchone() conn.close() if not user: raise HTTPException(status_code=401, detail="Invalid credentials") return { "message": "Login successful", "user": { "firstName": user[1], "lastName": user[2], "email": user[3] } } except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.post("/upload") async def upload_image(image: UploadFile = File(...)): # print(f'\n\t\tUPLOADED!!!!') try: file_path = UPLOAD_FOLDER / image.filename with file_path.open("wb") as buffer: shutil.copyfileobj(image.file, buffer) # print(f'Starting to pass into model, {file_path}') # Perform YOLO inference predictions = yolo.predict(str(file_path)) print(f'\n\n\n{predictions}\n\n\ \n\t\t\t\tare predictions') # Clean up uploaded file file_path.unlink() # Remove file after processing return JSONResponse(content={"items": predictions}) except Exception as e: return JSONResponse(content={"error": str(e)}, status_code=500) def cleanup_images(directory: str): """Remove all images in the directory.""" for file in Path(directory).glob("*"): file.unlink() @app.post("/generate-excel/") async def generate_excel(predictions: list): # Create an Excel workbook workbook = Workbook() sheet = workbook.active sheet.title = "Predictions" # Add headers headers = ["Category", "Confidence", "Predicted Brand", "Price", "Details", "Detected Text", "Image"] sheet.append(headers) for idx, prediction in enumerate(predictions): # Extract details from the prediction category = prediction["category"] confidence = prediction["confidence"] predicted_brand = prediction["predicted_brand"] price = prediction["price"] details = prediction["details"] detected_text = prediction["detected_text"] cropped_image_path = prediction["image_path"] # Append data row sheet.append([category, confidence, predicted_brand, price, details, detected_text]) # Add the image to the Excel file (if it exists) if os.path.exists(cropped_image_path): img = ExcelImage(cropped_image_path) img.width, img.height = 50, 50 # Resize image to fit into the cell sheet.add_image(img, f"G{idx + 2}") # Place in the "Image" column excel_file_path = "predictions_with_images.xlsx" workbook.save(excel_file_path) # Cleanup after saving cleanup_images(cropped_images_dir) # Serve the Excel file as a response return FileResponse( excel_file_path, media_type="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", filename="predictions_with_images.xlsx" ) # code to accept the localhost to get images from app.add_middleware( CORSMiddleware, allow_origins=["http://192.168.56.1:3000", "http://192.168.56.1:3001", "http://localhost:3000"], allow_methods=["*"], allow_headers=["*"], )