Spaces:
Runtime error
Runtime error
ronald cardenas acosta
commited on
Commit
·
141eb78
1
Parent(s):
40166c5
batching
Browse files- app.py +2 -2
- nwentfaithfulness.py +70 -21
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import evaluate
|
2 |
from evaluate.utils import launch_gradio_widget
|
3 |
|
4 |
-
|
5 |
-
module = evaluate.load("
|
6 |
launch_gradio_widget(module)
|
|
|
1 |
import evaluate
|
2 |
from evaluate.utils import launch_gradio_widget
|
3 |
|
4 |
+
METRICS_CACHE_DIR="/gfs/team/nlp/users/rcardena/tools/huggingface/evaluate"
|
5 |
+
module = evaluate.load("nwentfaithfulness",module_type="metric",cache_dir=METRICS_CACHE_DIR)
|
6 |
launch_gradio_widget(module)
|
nwentfaithfulness.py
CHANGED
@@ -15,20 +15,25 @@
|
|
15 |
|
16 |
import evaluate
|
17 |
import datasets
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
# TODO: Add BibTeX citation
|
21 |
_CITATION = """\
|
22 |
-
|
23 |
-
title = {A great new module},
|
24 |
-
authors={huggingface, Inc.},
|
25 |
-
year={2020}
|
26 |
}
|
27 |
"""
|
28 |
|
29 |
# TODO: Add description of the module here
|
30 |
_DESCRIPTION = """\
|
31 |
-
This
|
|
|
|
|
|
|
32 |
"""
|
33 |
|
34 |
|
@@ -36,13 +41,12 @@ This new module is designed to solve this great ML task and is crafted with a lo
|
|
36 |
_KWARGS_DESCRIPTION = """
|
37 |
Calculates how good are predictions given some references, using certain scores
|
38 |
Args:
|
39 |
-
predictions: list of predictions to score. Each
|
40 |
-
should be a string with tokens separated by spaces
|
41 |
-
references: list of
|
42 |
-
reference should be a string with tokens separated by spaces.
|
43 |
Returns:
|
44 |
-
|
45 |
-
another_score: description of the second score,
|
46 |
Examples:
|
47 |
Examples should be written in doctest format, and should illustrate how
|
48 |
to use the function.
|
@@ -50,11 +54,11 @@ Examples:
|
|
50 |
>>> my_new_module = evaluate.load("my_new_module")
|
51 |
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
|
52 |
>>> print(results)
|
53 |
-
{'
|
54 |
"""
|
55 |
|
56 |
# TODO: Define external resources urls if needed
|
57 |
-
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
58 |
|
59 |
|
60 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
@@ -75,7 +79,7 @@ class NwEntFaithfulness(evaluate.Metric):
|
|
75 |
'references': datasets.Value('int64'),
|
76 |
}),
|
77 |
# Homepage of the module for documentation
|
78 |
-
homepage="
|
79 |
# Additional links to the codebase or references
|
80 |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
|
81 |
reference_urls=["http://path.to.reference.url/new_module"]
|
@@ -86,10 +90,55 @@ class NwEntFaithfulness(evaluate.Metric):
|
|
86 |
# TODO: Download external resources if needed
|
87 |
pass
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
import evaluate
|
17 |
import datasets
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
21 |
+
import evaluate
|
22 |
+
from evaluate import logging
|
23 |
|
24 |
|
25 |
# TODO: Add BibTeX citation
|
26 |
_CITATION = """\
|
27 |
+
|
|
|
|
|
|
|
28 |
}
|
29 |
"""
|
30 |
|
31 |
# TODO: Add description of the module here
|
32 |
_DESCRIPTION = """\
|
33 |
+
This metric quantifies the faithfulness of a summary wrt to a source document,
|
34 |
+
as given by the probability that the document is entailed by the summary.
|
35 |
+
This metric uses pretrained models apt for the Newswire domain (see ScEntFaithfulness
|
36 |
+
for a version in scientific domain).
|
37 |
"""
|
38 |
|
39 |
|
|
|
41 |
_KWARGS_DESCRIPTION = """
|
42 |
Calculates how good are predictions given some references, using certain scores
|
43 |
Args:
|
44 |
+
predictions: list of predictions to score. Each prediction represents a summary and
|
45 |
+
should be a string with tokens separated by spaces
|
46 |
+
references: list of references for each prediction. Each
|
47 |
+
reference represents the input document and should be a string with tokens separated by spaces.
|
48 |
Returns:
|
49 |
+
ent-faith: description of the first score,
|
|
|
50 |
Examples:
|
51 |
Examples should be written in doctest format, and should illustrate how
|
52 |
to use the function.
|
|
|
54 |
>>> my_new_module = evaluate.load("my_new_module")
|
55 |
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
|
56 |
>>> print(results)
|
57 |
+
{'ent-faith': 1.0}
|
58 |
"""
|
59 |
|
60 |
# TODO: Define external resources urls if needed
|
61 |
+
# BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
62 |
|
63 |
|
64 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
|
|
79 |
'references': datasets.Value('int64'),
|
80 |
}),
|
81 |
# Homepage of the module for documentation
|
82 |
+
homepage="https://huggingface.co/spaces/ronaldahmed/nwentfaithfulness",
|
83 |
# Additional links to the codebase or references
|
84 |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
|
85 |
reference_urls=["http://path.to.reference.url/new_module"]
|
|
|
90 |
# TODO: Download external resources if needed
|
91 |
pass
|
92 |
|
93 |
+
# original: references
|
94 |
+
def _compute(self, predictions, documents,
|
95 |
+
batch_size: int = 16, device=None):
|
96 |
+
|
97 |
+
MODEL_CACHE_DIR="/gfs/team/nlp/users/rcardena/tools/huggingface"
|
98 |
+
if device is not None:
|
99 |
+
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
|
100 |
+
if device == "gpu":
|
101 |
+
device = "cuda"
|
102 |
+
else:
|
103 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
104 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
105 |
+
"ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli",
|
106 |
+
cache_dir=MODEL_CACHE_DIR)
|
107 |
+
model = model.to(device)
|
108 |
+
|
109 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
110 |
+
"ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli",
|
111 |
+
cache_dir=MODEL_CACHE_DIR)
|
112 |
+
max_tokenized_len = model.config.max_length | 256
|
113 |
+
|
114 |
+
encoded_texts = []
|
115 |
+
attn_masks = []
|
116 |
+
tok_types = []
|
117 |
+
for pred,doc in zip(predictions,documents):
|
118 |
+
enc = tokenizer.encode_plus(pred, doc,
|
119 |
+
max_length=max_tokenized_len,
|
120 |
+
padding=True,
|
121 |
+
truncation=True,
|
122 |
+
return_token_type_ids=True,
|
123 |
+
return_attention_mask=True)
|
124 |
+
encoded_texts.append(enc["input_ids"])
|
125 |
+
attn_masks.append(enc["attention_mask"])
|
126 |
+
tok_types.append(enc["token_type_ids"])
|
127 |
+
|
128 |
+
|
129 |
+
enf_fs = []
|
130 |
+
for start_index in logging.tqdm(range(0, len(encoded_texts), batch_size)):
|
131 |
+
end_index = min(start_index + batch_size, len(encoded_texts))
|
132 |
+
encoded_batch = torch.Long(encoded_texts[start_index:end_index]).to(device)
|
133 |
+
attn_mask = torch.Long(attn_masks[start_index:end_index]).to(device)
|
134 |
+
token_type = torch.Long(tok_types[start_index:end_index]).to(device)
|
135 |
+
|
136 |
+
with torch.no_grad():
|
137 |
+
outputs = model(encoded_batch,
|
138 |
+
attention_mask=attn_mask,
|
139 |
+
token_type_ids=token_type,
|
140 |
+
labels=None)[0]
|
141 |
+
probs = torch.softmax(outputs,dim=1)[:,0].tolist()
|
142 |
+
enf_fs += probs
|
143 |
+
|
144 |
+
return {"ent-faith": enf_fs, "mean_ent-faith": np.mean(enf_fs)}
|