romnatall commited on
Commit
d3d0074
·
1 Parent(s): 75139a0
app.py CHANGED
@@ -1,8 +1,9 @@
 
1
  import streamlit as st
2
  from PIL import Image
3
  st.title("NLP project")
4
 
5
- description_show_options = ['main','film_review','toxic_messages','GPT','над проектом работали']
6
  description_show = st.sidebar.radio("Description", description_show_options)
7
 
8
  if description_show == 'над проектом работали':
@@ -11,14 +12,14 @@ if description_show == 'над проектом работали':
11
  col1, col2, col3 = st.columns(3)
12
  with col1:
13
 
14
- romaimage = Image.open("images/roma.jpg")
15
- st.image(romaimage, caption="Рома | cosplayNet enjoyer | DevOps", use_column_width=True)
16
  with col2:
17
  leraimage = Image.open("images/Lera.png")
18
- st.image(leraimage, caption="Лера | UNet bender | Data Scientist", use_column_width=True)
19
  with col3:
20
- olyaimage = Image.open("images/olya.jpg")
21
- st.image(olyaimage, caption="Бауржан | streamlit master | Frontender", use_column_width=True)
22
  elif description_show == 'GPT':
23
  st.title("GPT")
24
 
@@ -28,19 +29,44 @@ elif description_show == 'main':
28
  elif description_show == 'film_review':
29
  st.title("film_review")
30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
- # Weighted F1-score: 0.7069352925929284
33
- # Classification Report:
34
- # precision recall f1-score support
 
 
 
35
 
36
- # Bad 0.67 0.81 0.74 960
37
- # Neutral 0.65 0.50 0.56 922
38
- # Good 0.82 0.82 0.82 896
39
 
40
- # accuracy 0.71 2778
41
- # macro avg 0.71 0.71 0.71 2778
42
- # weighted avg 0.71 0.71 0.71 2778
 
43
 
 
 
 
 
 
 
 
 
 
44
  elif description_show == 'toxic_messages':
45
  st.title("toxic_messages")
46
 
 
1
+ from math import e
2
  import streamlit as st
3
  from PIL import Image
4
  st.title("NLP project")
5
 
6
+ description_show_options = ['main','film_review','toxic_messages','над проектом работали']
7
  description_show = st.sidebar.radio("Description", description_show_options)
8
 
9
  if description_show == 'над проектом работали':
 
12
  col1, col2, col3 = st.columns(3)
13
  with col1:
14
 
15
+ romaimage = Image.open("images/roma.png")
16
+ st.image(romaimage, caption="Рома | custom attention enjoyer | DevOps", use_column_width=True, )
17
  with col2:
18
  leraimage = Image.open("images/Lera.png")
19
+ st.image(leraimage, caption="Лера | GPT bender | Data Scientist", use_column_width=True)
20
  with col3:
21
+ olyaimage = Image.open("images/baur.jpg")
22
+ st.image(olyaimage, caption="Бауржан | TF/IDF master | Frontender", use_column_width=True)
23
  elif description_show == 'GPT':
24
  st.title("GPT")
25
 
 
29
  elif description_show == 'film_review':
30
  st.title("film_review")
31
 
32
+ st.write("------------")
33
+ st.write("BERT embedding + LSTM + roman attention")
34
+ text = """Weighted F1-score: 0.70\n
35
+ Classification Report:
36
+ precision recall f1-score support
37
+ Bad 0.67 0.81 0.74 960
38
+ Neutral 0.65 0.50 0.56 922
39
+ Good 0.82 0.82 0.82 896
40
+ -----
41
+ accuracy 0.71 2778
42
+ macro avg 0.71 0.71 0.71 2778
43
+ weighted avg 0.71 0.71 0.71 2778"""
44
+ st.markdown(text)
45
+ png = Image.open("images/film_lstm.png")
46
+ st.image(png, use_column_width=True)
47
 
48
+ st.write("------------")
49
+ st.write("tf-idf + Logreg")
50
+ png = Image.open("images/film_tfidf.jpg")
51
+ st.image(png, use_column_width=True)
52
+ png = Image.open("images/tf_idf_cm.jpg")
53
+ st.image(png, use_column_width=True)
54
 
 
 
 
55
 
56
+ st.write("------------")
57
+ st.write("Bert embedding + LogReg")
58
+ png = Image.open("images/film_bert.jpg")
59
+ st.image(png, use_column_width=True)
60
 
61
+
62
+
63
+
64
+
65
+ elif description_show == 'toxic_messages':
66
+ st.title("toxic_messages")
67
+ png = Image.open("images/toxic.png")
68
+ st.image(png, use_column_width=True)
69
+
70
  elif description_show == 'toxic_messages':
71
  st.title("toxic_messages")
72
 
images/{olya.jpg → baur.jpg} RENAMED
File without changes
images/film_bert.jpg ADDED
images/film_lstm.png ADDED
images/film_tfidf.jpg ADDED
images/roma.png ADDED
images/ss.png ADDED
images/tf_idf_cm.jpg ADDED
images/toxic.png ADDED
pages/0film_reviev.py CHANGED
@@ -7,6 +7,20 @@ st.title("film_review")
7
  input_text = st.text_area("Enter your text")
8
  from pages.film_review.model.model_lstm import *
9
  from pages.film_review.model.model_logreg import *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
  @st.cache_resource
12
  def get_model():
@@ -16,15 +30,22 @@ model.eval()
16
  dec = {0:'отрицательный',1:'нейтральный',2:'положительный'}
17
 
18
  if input_text:
19
- with torch.no_grad():
20
- ans = torch.nn.functional.softmax(model(input_text), dim=1)
21
- idx = torch.argmax(ans, dim=1).item()
22
- st.write(f'LSTM - отзыв: {dec[idx]}, уверенность: { round(ans[0][idx].item(),2)}')
23
-
24
- st.write(f'Logreg - отзыв: {dec[ predict_tfidf(input_text)[0]]}')
25
-
26
-
 
 
 
 
 
 
 
 
 
27
 
28
 
29
- else:
30
- st.write("No text entered")
 
7
  input_text = st.text_area("Enter your text")
8
  from pages.film_review.model.model_lstm import *
9
  from pages.film_review.model.model_logreg import *
10
+ from pages.film_review.model.model_bert import *
11
+
12
+
13
+ import time
14
+
15
+ class Timer:
16
+ def __enter__(self):
17
+ self.start_time = time.time()
18
+ return self
19
+
20
+ def __exit__(self, *args):
21
+ self.end_time = time.time()
22
+ self.execution_time = self.end_time - self.start_time
23
+
24
 
25
  @st.cache_resource
26
  def get_model():
 
30
  dec = {0:'отрицательный',1:'нейтральный',2:'положительный'}
31
 
32
  if input_text:
33
+
34
+ with Timer() as t:
35
+ with torch.no_grad():
36
+ ans = torch.nn.functional.softmax(model(input_text), dim=1)
37
+ idx = torch.argmax(ans, dim=1).item()
38
+ st.write(f'LSTM - отзыв: {dec[idx]}, уверенность: { round(ans[0][idx].item(),2)}')
39
+ st.write("Время выполнения:", round(t.execution_time*1000, 2), "миллисекунд")
40
+
41
+ st.write("------------")
42
+ with Timer() as t:
43
+ st.write(f'Logreg - отзыв: {dec[ predict_tfidf(input_text)[0]]}')
44
+ st.write("Время выполнения:", round(t.execution_time*1000, 2), "миллисекунд")
45
+
46
+ st.write("------------")
47
+ with Timer() as t:
48
+ st.write(f'Bert - отзыв: {dec[ predict_bert(input_text)]}')
49
+ st.write("Время выполнения:", round(t.execution_time*1000, 2), "миллисекунд")
50
 
51
 
 
 
pages/film_review/model/log_reg_bert.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a6dc8a96c93ed97b248f73955cfe28998ab5bc360d2635dcc7129aa92425361
3
+ size 8225
pages/film_review/model/model_bert.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d74ff4026ce64a4c33dda7730aa03c771b097cc1f0ea3d79d69935482559209
3
+ size 13420
pages/film_review/model/model_bert.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ from transformers import AutoTokenizer, AutoModel
4
+ from sklearn.linear_model import LogisticRegression
5
+ import streamlit as st
6
+ import pickle
7
+ import streamlit as st
8
+
9
+ @st.cache_resource
10
+ def get_model():
11
+ model = AutoModel.from_pretrained("cointegrated/rubert-tiny2")
12
+ tokenizer = AutoTokenizer.from_pretrained("cointegrated/rubert-tiny2")
13
+ return model, tokenizer
14
+
15
+ def predict_bert(input_text):
16
+ MAX_LEN = 300
17
+
18
+ model, tokenizer = get_model()
19
+
20
+ tokenized_input = tokenizer.encode(input_text, add_special_tokens=True, truncation=True, max_length=MAX_LEN)
21
+ padded_input = np.array(tokenized_input + [0]*(MAX_LEN-len(tokenized_input)))
22
+ attention_mask = np.where(padded_input != 0, 1, 0)
23
+
24
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
25
+ model.to(device)
26
+
27
+ with torch.no_grad():
28
+ input_tensor = torch.tensor(padded_input).unsqueeze(0).to(device)
29
+ attention_mask_tensor = torch.tensor(attention_mask).unsqueeze(0).to(device)
30
+ last_hidden_states = model(input_tensor, attention_mask=attention_mask_tensor)[0]
31
+
32
+ features = last_hidden_states[:,0,:].cpu().numpy()
33
+
34
+ with open('pages/film_review/model/log_reg_bert.pkl', 'rb') as f:
35
+ loaded_model = pickle.load(f)
36
+
37
+ prediction = loaded_model.predict(features)
38
+
39
+ return prediction[0]
pages/film_review/model/model_lstm.py CHANGED
@@ -1,9 +1,11 @@
1
  ATTENTION_SIZE=10
2
  HIDDEN_SIZE=300
3
  INPUT_SIZE=312
 
4
  import torch
5
  from transformers import AutoTokenizer, AutoModel
6
  import torch.nn as nn
 
7
 
8
  class RomanAttention(nn.Module):
9
  def __init__(self, hidden_size: int = HIDDEN_SIZE) -> None:
@@ -31,14 +33,18 @@ class RomanAttention(nn.Module):
31
 
32
  import pytorch_lightning as lg
33
 
 
 
 
 
 
 
 
 
 
34
 
35
- m = AutoModel.from_pretrained("cointegrated/rubert-tiny2")
36
- emb=m.embeddings
37
- #emb.dropout=nn.Dropout(0)
38
- for param in emb.parameters():
39
- param.requires_grad = False
40
 
41
- tokenizer = AutoTokenizer.from_pretrained("cointegrated/rubert-tiny2")
42
  def tokenize(text):
43
  t=tokenizer(text, padding=True, truncation=True,pad_to_multiple_of=300,max_length=300)['input_ids']
44
  if len(t) <30:
 
1
  ATTENTION_SIZE=10
2
  HIDDEN_SIZE=300
3
  INPUT_SIZE=312
4
+ from math import e
5
  import torch
6
  from transformers import AutoTokenizer, AutoModel
7
  import torch.nn as nn
8
+ import streamlit as st
9
 
10
  class RomanAttention(nn.Module):
11
  def __init__(self, hidden_size: int = HIDDEN_SIZE) -> None:
 
33
 
34
  import pytorch_lightning as lg
35
 
36
+ @st.cache_resource
37
+ def load_model():
38
+ m = AutoModel.from_pretrained("cointegrated/rubert-tiny2")
39
+ emb=m.embeddings
40
+ #emb.dropout=nn.Dropout(0)
41
+ for param in emb.parameters():
42
+ param.requires_grad = False
43
+ tokenizer = AutoTokenizer.from_pretrained("cointegrated/rubert-tiny2")
44
+ return emb, tokenizer
45
 
46
+ emb, tokenizer = load_model()
 
 
 
 
47
 
 
48
  def tokenize(text):
49
  t=tokenizer(text, padding=True, truncation=True,pad_to_multiple_of=300,max_length=300)['input_ids']
50
  if len(t) <30: