rmaitest's picture
Update app.py
b1f7899 verified
import gradio as gr
import pandas as pd
from huggingface_hub import hf_hub_download
import joblib
# Load the model
repo_id = "rmaitest/mlmodel2"
model_file = "house_price_model.pkl" # Adjust as necessary
# Download and load the model
model_path = hf_hub_download(repo_id, model_file)
model = joblib.load(model_path)
def predict_price(size, bedrooms, age):
# Create a DataFrame from the input
input_data = pd.DataFrame({
'Size (sq ft)': [size],
'Number of Bedrooms': [bedrooms],
'Age of House (years)': [age]
})
# Make prediction
prediction = model.predict(input_data)
return prediction[0]
# Define the Gradio interface
iface = gr.Interface(
fn=predict_price,
inputs=[
gr.Number(label="Size (sq ft)"),
gr.Number(label="Number of Bedrooms"),
gr.Number(label="Age of House (years)")
],
outputs=gr.Number(label="Predicted Price ($)"),
title="House Price Prediction",
description="Enter the size, number of bedrooms, and age of the house to get the predicted price."
)
# Launch the interface with a public URL
iface.launch(share=True)