Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
from huggingface_hub import hf_hub_download | |
import joblib | |
# Load the model | |
repo_id = "rmaitest/mlmodel2" | |
model_file = "house_price_model.pkl" # Adjust as necessary | |
# Download and load the model | |
model_path = hf_hub_download(repo_id, model_file) | |
model = joblib.load(model_path) | |
def predict_price(size, bedrooms, age): | |
# Create a DataFrame from the input | |
input_data = pd.DataFrame({ | |
'Size (sq ft)': [size], | |
'Number of Bedrooms': [bedrooms], | |
'Age of House (years)': [age] | |
}) | |
# Make prediction | |
prediction = model.predict(input_data) | |
return prediction[0] | |
# Define the Gradio interface | |
iface = gr.Interface( | |
fn=predict_price, | |
inputs=[ | |
gr.Number(label="Size (sq ft)"), | |
gr.Number(label="Number of Bedrooms"), | |
gr.Number(label="Age of House (years)") | |
], | |
outputs=gr.Number(label="Predicted Price ($)"), | |
title="House Price Prediction", | |
description="Enter the size, number of bedrooms, and age of the house to get the predicted price." | |
) | |
# Launch the interface with a public URL | |
iface.launch(share=True) | |