rizkynindra commited on
Commit
239890d
Β·
1 Parent(s): 028f49b

sahabat tai

Browse files
Files changed (2) hide show
  1. app.py +179 -0
  2. requirements.txt +10 -0
app.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import transformers
3
+ import os
4
+ from langchain_huggingface import HuggingFaceEndpoint
5
+ import streamlit as st
6
+ from langchain_core.prompts import PromptTemplate
7
+ from langchain_core.output_parsers import StrOutputParser
8
+
9
+ model_id = "GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct"
10
+ HF_TOKEN = os.getenv("HF") # Ensure this is set correctly
11
+
12
+ pipeline = transformers.pipeline(
13
+ "text-generation",
14
+ model=model_id,
15
+ model_kwargs={"torch_dtype": torch.bfloat16},
16
+ device_map="auto",
17
+ )
18
+
19
+ def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1):
20
+ """
21
+ Returns a language model for HuggingFace inference.
22
+
23
+ Parameters:
24
+ - model_id (str): The ID of the HuggingFace model repository.
25
+ - max_new_tokens (int): The maximum number of new tokens to generate.
26
+ - temperature (float): The temperature for sampling from the model.
27
+
28
+ Returns:
29
+ - llm (HuggingFaceEndpoint): The language model for HuggingFace inference.
30
+ """
31
+ # Make sure to specify the task
32
+ llm = HuggingFaceEndpoint(
33
+ repo_id=model_id,
34
+ task="text-generation", # Use the correct task for your model
35
+ huggingface_token=os.getenv("HF"), # Pass your API token
36
+ max_new_tokens= max_new_tokens,
37
+ temperature= temperature
38
+
39
+ )
40
+ return llm
41
+
42
+
43
+ # Configure the Streamlit app
44
+ st.set_page_config(page_title="HuggingFace ChatBot", page_icon="πŸ€—")
45
+ st.title("Personal HuggingFace ChatBot")
46
+ st.markdown(
47
+ f"*This is a simple chatbot that uses the HuggingFace transformers library to generate responses to your text input. It uses the {model_id}.*")
48
+
49
+ # Initialize session state for avatars
50
+ if "avatars" not in st.session_state:
51
+ st.session_state.avatars = {'user': None, 'assistant': None}
52
+
53
+ # Initialize session state for user text input
54
+ if 'user_text' not in st.session_state:
55
+ st.session_state.user_text = None
56
+
57
+ # Initialize session state for model parameters
58
+ if "max_response_length" not in st.session_state:
59
+ st.session_state.max_response_length = 256
60
+
61
+ if "system_message" not in st.session_state:
62
+ st.session_state.system_message = "You are a helpful assistant"
63
+
64
+ if "starter_message" not in st.session_state:
65
+ st.session_state.starter_message = "Hello, there! How can I help you today?"
66
+
67
+ # Sidebar for settings
68
+ with st.sidebar:
69
+ st.header("System Settings")
70
+
71
+ # AI Settings
72
+ st.session_state.system_message = st.text_area(
73
+ "System Message", value="You are a helpful assistant"
74
+ )
75
+ st.session_state.starter_message = st.text_area(
76
+ 'First AI Message', value="Hello, there! How can I help you today?"
77
+ )
78
+
79
+ # Model Settings
80
+ st.session_state.max_response_length = st.number_input(
81
+ "Max Response Length", value=128
82
+ )
83
+
84
+ # Avatar Selection
85
+ st.markdown("*Select Avatars:*")
86
+ col1, col2 = st.columns(2)
87
+ with col1:
88
+ st.session_state.avatars['assistant'] = st.selectbox(
89
+ "AI Avatar", options=["πŸ€—", "πŸ’¬", "πŸ€–"], index=0
90
+ )
91
+ with col2:
92
+ st.session_state.avatars['user'] = st.selectbox(
93
+ "User Avatar", options=["πŸ‘€", "πŸ‘±β€β™‚οΈ", "πŸ‘¨πŸΎ", "πŸ‘©", "πŸ‘§πŸΎ"], index=0
94
+ )
95
+ # Reset Chat History
96
+ reset_history = st.button("Reset Chat History")
97
+
98
+ # Initialize or reset chat history
99
+ if "chat_history" not in st.session_state or reset_history:
100
+ st.session_state.chat_history = [{"role": "assistant", "content": st.session_state.starter_message}]
101
+
102
+
103
+ def get_response(system_message, chat_history, user_text,
104
+ max_new_tokens=256):
105
+ """
106
+ Generates a response from the chatbot model.
107
+
108
+ Args:
109
+ system_message (str): The system message for the conversation.
110
+ chat_history (list): The list of previous chat messages.
111
+ user_text (str): The user's input text.
112
+ max_new_tokens (int, optional): The maximum number of new tokens to generate.
113
+
114
+ Returns:
115
+ tuple: A tuple containing the generated response and the updated chat history.
116
+ """
117
+ # Set up the model
118
+ hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1)
119
+
120
+ # Create the prompt template
121
+ prompt = PromptTemplate.from_template(
122
+ (
123
+ "[INST] {system_message}"
124
+ "\nCurrent Conversation:\n{chat_history}\n\n"
125
+ "\nUser: {user_text}.\n [/INST]"
126
+ "\nAI:"
127
+ )
128
+ )
129
+ # Make the chain and bind the prompt
130
+ chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
131
+
132
+ # Generate the response
133
+ response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
134
+ response = response.split("AI:")[-1]
135
+
136
+ # Update the chat history
137
+ chat_history.append({'role': 'user', 'content': user_text})
138
+ chat_history.append({'role': 'assistant', 'content': response})
139
+ return response, chat_history
140
+
141
+
142
+ # Chat interface
143
+ chat_interface = st.container()
144
+ with chat_interface:
145
+ output_container = st.container()
146
+ st.session_state.user_text = st.chat_input(placeholder="Enter your text here.")
147
+
148
+ # Display chat messages
149
+ with output_container:
150
+ # For every message in the history
151
+ for message in st.session_state.chat_history:
152
+ # Skip the system message
153
+ if message['role'] == 'system':
154
+ continue
155
+
156
+ # Display the chat message using the correct avatar
157
+ with st.chat_message(message['role'],
158
+ avatar=st.session_state['avatars'][message['role']]):
159
+ st.markdown(message['content'])
160
+
161
+ # When the user enters new text:
162
+ if st.session_state.user_text:
163
+ # Display the user's new message immediately
164
+ with st.chat_message("user",
165
+ avatar=st.session_state.avatars['user']):
166
+ st.markdown(st.session_state.user_text)
167
+
168
+ # Display a spinner status bar while waiting for the response
169
+ with st.chat_message("assistant",
170
+ avatar=st.session_state.avatars['assistant']):
171
+ with st.spinner("Thinking..."):
172
+ # Call the Inference API with the system_prompt, user text, and history
173
+ response, st.session_state.chat_history = get_response(
174
+ system_message=st.session_state.system_message,
175
+ user_text=st.session_state.user_text,
176
+ chat_history=st.session_state.chat_history,
177
+ max_new_tokens=st.session_state.max_response_length,
178
+ )
179
+ st.markdown(response)
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ transformers
2
+ huggingface_hub
3
+ streamlit
4
+ langchain_core
5
+ langchain_community
6
+ langchain_huggingface
7
+ langchain_text_splitters
8
+ accelerate
9
+ watchdog
10
+ tqdm