rizkynindra's picture
sahabat tai
59ccd2c
raw
history blame
2.15 kB
import gradio as gr
import torch
import transformers
# Model setup
model_id = "GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
# Chatbot Functionality
def chatbot(messages):
"""
Handles user interactions and returns the model's response.
Args:
messages (list): List of messages with roles ('user' or 'assistant') and content.
Returns:
list: Updated conversation with the assistant's response.
"""
# Prepare the conversation for the model
outputs = pipeline(
messages,
max_new_tokens=256,
eos_token_id=terminators,
)
# Extract and format the assistant's response
assistant_response = outputs[0]["generated_text"] if outputs else "I'm sorry, I couldn't generate a response."
messages.append({"role": "assistant", "content": assistant_response})
return messages
# Gradio Chat Interface
with gr.Blocks() as demo:
gr.Markdown("# πŸ€— Gemma2 Chatbot")
gr.Markdown("A chatbot that understands Javanese and Sundanese, powered by `GoToCompany/gemma2`.")
chat_history = gr.Chatbot(label="Gemma2 Chatbot")
user_input = gr.Textbox(label="Your Message", placeholder="Type your message here...")
send_button = gr.Button("Send")
def respond(chat_history, user_message):
# Add user message to chat history
chat_history.append(("user", user_message))
# Generate assistant's response
conversation = [{"role": role, "content": content} for role, content in chat_history]
response = chatbot(conversation)
# Add assistant's response to chat history
assistant_message = response[-1]["content"]
chat_history.append(("assistant", assistant_message))
return chat_history, ""
send_button.click(respond, inputs=[chat_history, user_input], outputs=[chat_history, user_input])
# Launch the app
demo.launch()