Spaces:
Running
Running
File size: 21,522 Bytes
4df4988 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 |
import asyncio
import string
from collections import Counter
from itertools import count, tee
import cv2
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import streamlit as st
import torch
from PIL import Image
from transformers import DetrImageProcessor, TableTransformerForObjectDetection
from vietocr.tool.config import Cfg
from vietocr.tool.predictor import Predictor
st.set_option('deprecation.showPyplotGlobalUse', False)
st.set_page_config(layout='wide')
st.title("Table Detection and Table Structure Recognition")
st.write(
"Implemented by MSFT team: https://github.com/microsoft/table-transformer")
# config = Cfg.load_config_from_name('vgg_transformer')
config = Cfg.load_config_from_name('vgg_seq2seq')
config['cnn']['pretrained'] = False
config['device'] = 'cpu'
config['predictor']['beamsearch'] = False
detector = Predictor(config)
table_detection_model = TableTransformerForObjectDetection.from_pretrained(
"microsoft/table-transformer-detection")
table_recognition_model = TableTransformerForObjectDetection.from_pretrained(
"microsoft/table-transformer-structure-recognition")
def PIL_to_cv(pil_img):
return cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
def cv_to_PIL(cv_img):
return Image.fromarray(cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB))
async def pytess(cell_pil_img, threshold: float = 0.5):
text, prob = detector.predict(cell_pil_img, return_prob=True)
if prob < threshold:
return ""
return text.strip()
def sharpen_image(pil_img):
img = PIL_to_cv(pil_img)
sharpen_kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])
sharpen = cv2.filter2D(img, -1, sharpen_kernel)
pil_img = cv_to_PIL(sharpen)
return pil_img
def uniquify(seq, suffs=count(1)):
"""Make all the items unique by adding a suffix (1, 2, etc).
Credit: https://stackoverflow.com/questions/30650474/python-rename-duplicates-in-list-with-progressive-numbers-without-sorting-list
`seq` is mutable sequence of strings.
`suffs` is an optional alternative suffix iterable.
"""
not_unique = [k for k, v in Counter(seq).items() if v > 1]
suff_gens = dict(zip(not_unique, tee(suffs, len(not_unique))))
for idx, s in enumerate(seq):
try:
suffix = str(next(suff_gens[s]))
except KeyError:
continue
else:
seq[idx] += suffix
return seq
def binarizeBlur_image(pil_img):
image = PIL_to_cv(pil_img)
thresh = cv2.threshold(image, 150, 255, cv2.THRESH_BINARY_INV)[1]
result = cv2.GaussianBlur(thresh, (5, 5), 0)
result = 255 - result
return cv_to_PIL(result)
def td_postprocess(pil_img):
'''
Removes gray background from tables
'''
img = PIL_to_cv(pil_img)
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, (0, 0, 100),
(255, 5, 255)) # (0, 0, 100), (255, 5, 255)
nzmask = cv2.inRange(hsv, (0, 0, 5),
(255, 255, 255)) # (0, 0, 5), (255, 255, 255))
nzmask = cv2.erode(nzmask, np.ones((3, 3))) # (3,3)
mask = mask & nzmask
new_img = img.copy()
new_img[np.where(mask)] = 255
return cv_to_PIL(new_img)
# def super_res(pil_img):
# # requires opencv-contrib-python installed without the opencv-python
# sr = dnn_superres.DnnSuperResImpl_create()
# image = PIL_to_cv(pil_img)
# model_path = "./LapSRN_x8.pb"
# model_name = model_path.split('/')[1].split('_')[0].lower()
# model_scale = int(model_path.split('/')[1].split('_')[1].split('.')[0][1])
# sr.readModel(model_path)
# sr.setModel(model_name, model_scale)
# final_img = sr.upsample(image)
# final_img = cv_to_PIL(final_img)
# return final_img
def table_detector(image, THRESHOLD_PROBA):
'''
Table detection using DEtect-object TRansformer pre-trained on 1 million tables
'''
feature_extractor = DetrImageProcessor(do_resize=True,
size=800,
max_size=800)
encoding = feature_extractor(image, return_tensors="pt")
with torch.no_grad():
outputs = table_detection_model(**encoding)
probas = outputs.logits.softmax(-1)[0, :, :-1]
keep = probas.max(-1).values > THRESHOLD_PROBA
target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0)
postprocessed_outputs = feature_extractor.post_process(
outputs, target_sizes)
bboxes_scaled = postprocessed_outputs[0]['boxes'][keep]
return (probas[keep], bboxes_scaled)
def table_struct_recog(image, THRESHOLD_PROBA):
'''
Table structure recognition using DEtect-object TRansformer pre-trained on 1 million tables
'''
feature_extractor = DetrImageProcessor(do_resize=True,
size=1000,
max_size=1000)
encoding = feature_extractor(image, return_tensors="pt")
with torch.no_grad():
outputs = table_recognition_model(**encoding)
probas = outputs.logits.softmax(-1)[0, :, :-1]
keep = probas.max(-1).values > THRESHOLD_PROBA
target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0)
postprocessed_outputs = feature_extractor.post_process(
outputs, target_sizes)
bboxes_scaled = postprocessed_outputs[0]['boxes'][keep]
return (probas[keep], bboxes_scaled)
class TableExtractionPipeline():
colors = ["red", "blue", "green", "yellow", "orange", "violet"]
# colors = ["red", "blue", "green", "red", "red", "red"]
def add_padding(self,
pil_img,
top,
right,
bottom,
left,
color=(255, 255, 255)):
'''
Image padding as part of TSR pre-processing to prevent missing table edges
'''
width, height = pil_img.size
new_width = width + right + left
new_height = height + top + bottom
result = Image.new(pil_img.mode, (new_width, new_height), color)
result.paste(pil_img, (left, top))
return result
def plot_results_detection(self, c1, model, pil_img, prob, boxes,
delta_xmin, delta_ymin, delta_xmax, delta_ymax):
'''
crop_tables and plot_results_detection must have same co-ord shifts because 1 only plots the other one updates co-ordinates
'''
# st.write('img_obj')
# st.write(pil_img)
plt.imshow(pil_img)
ax = plt.gca()
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
cl = p.argmax()
xmin, ymin, xmax, ymax = xmin - delta_xmin, ymin - delta_ymin, xmax + delta_xmax, ymax + delta_ymax
ax.add_patch(
plt.Rectangle((xmin, ymin),
xmax - xmin,
ymax - ymin,
fill=False,
color='red',
linewidth=3))
text = f'{model.config.id2label[cl.item()]}: {p[cl]:0.2f}'
ax.text(xmin - 20,
ymin - 50,
text,
fontsize=10,
bbox=dict(facecolor='yellow', alpha=0.5))
plt.axis('off')
c1.pyplot()
def crop_tables(self, pil_img, prob, boxes, delta_xmin, delta_ymin,
delta_xmax, delta_ymax):
'''
crop_tables and plot_results_detection must have same co-ord shifts because 1 only plots the other one updates co-ordinates
'''
cropped_img_list = []
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
xmin, ymin, xmax, ymax = xmin - delta_xmin, ymin - delta_ymin, xmax + delta_xmax, ymax + delta_ymax
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
cropped_img_list.append(cropped_img)
return cropped_img_list
def generate_structure(self, c2, model, pil_img, prob, boxes,
expand_rowcol_bbox_top, expand_rowcol_bbox_bottom):
'''
Co-ordinates are adjusted here by 3 'pixels'
To plot table pillow image and the TSR bounding boxes on the table
'''
# st.write('img_obj')
# st.write(pil_img)
plt.figure(figsize=(32, 20))
plt.imshow(pil_img)
ax = plt.gca()
rows = {}
cols = {}
idx = 0
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
xmin, ymin, xmax, ymax = xmin, ymin, xmax, ymax
cl = p.argmax()
class_text = model.config.id2label[cl.item()]
text = f'{class_text}: {p[cl]:0.2f}'
# or (class_text == 'table column')
if (class_text
== 'table row') or (class_text
== 'table projected row header') or (
class_text == 'table column'):
ax.add_patch(
plt.Rectangle((xmin, ymin),
xmax - xmin,
ymax - ymin,
fill=False,
color=self.colors[cl.item()],
linewidth=2))
ax.text(xmin - 10,
ymin - 10,
text,
fontsize=5,
bbox=dict(facecolor='yellow', alpha=0.5))
if class_text == 'table row':
rows['table row.' +
str(idx)] = (xmin, ymin - expand_rowcol_bbox_top, xmax,
ymax + expand_rowcol_bbox_bottom)
if class_text == 'table column':
cols['table column.' +
str(idx)] = (xmin, ymin - expand_rowcol_bbox_top, xmax,
ymax + expand_rowcol_bbox_bottom)
idx += 1
plt.axis('on')
c2.pyplot()
return rows, cols
def sort_table_featuresv2(self, rows: dict, cols: dict):
# Sometimes the header and first row overlap, and we need the header bbox not to have first row's bbox inside the headers bbox
rows_ = {
table_feature: (xmin, ymin, xmax, ymax)
for table_feature, (
xmin, ymin, xmax,
ymax) in sorted(rows.items(), key=lambda tup: tup[1][1])
}
cols_ = {
table_feature: (xmin, ymin, xmax, ymax)
for table_feature, (
xmin, ymin, xmax,
ymax) in sorted(cols.items(), key=lambda tup: tup[1][0])
}
return rows_, cols_
def individual_table_featuresv2(self, pil_img, rows: dict, cols: dict):
for k, v in rows.items():
xmin, ymin, xmax, ymax = v
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
rows[k] = xmin, ymin, xmax, ymax, cropped_img
for k, v in cols.items():
xmin, ymin, xmax, ymax = v
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
cols[k] = xmin, ymin, xmax, ymax, cropped_img
return rows, cols
def object_to_cellsv2(self, master_row: dict, cols: dict,
expand_rowcol_bbox_top, expand_rowcol_bbox_bottom,
padd_left):
'''Removes redundant bbox for rows&columns and divides each row into cells from columns
Args:
Returns:
'''
cells_img = {}
header_idx = 0
row_idx = 0
previous_xmax_col = 0
new_cols = {}
new_master_row = {}
previous_ymin_row = 0
new_cols = cols
new_master_row = master_row
## Below 2 for loops remove redundant bounding boxes ###
# for k_col, v_col in cols.items():
# xmin_col, _, xmax_col, _, col_img = v_col
# if (np.isclose(previous_xmax_col, xmax_col, atol=5)) or (xmin_col >= xmax_col):
# print('Found a column with double bbox')
# continue
# previous_xmax_col = xmax_col
# new_cols[k_col] = v_col
# for k_row, v_row in master_row.items():
# _, ymin_row, _, ymax_row, row_img = v_row
# if (np.isclose(previous_ymin_row, ymin_row, atol=5)) or (ymin_row >= ymax_row):
# print('Found a row with double bbox')
# continue
# previous_ymin_row = ymin_row
# new_master_row[k_row] = v_row
######################################################
for k_row, v_row in new_master_row.items():
_, _, _, _, row_img = v_row
xmax, ymax = row_img.size
xa, ya, xb, yb = 0, 0, 0, ymax
row_img_list = []
# plt.imshow(row_img)
# st.pyplot()
for idx, kv in enumerate(new_cols.items()):
k_col, v_col = kv
xmin_col, _, xmax_col, _, col_img = v_col
xmin_col, xmax_col = xmin_col - padd_left - 10, xmax_col - padd_left
xa = xmin_col
xb = xmax_col
if idx == 0:
xa = 0
if idx == len(new_cols) - 1:
xb = xmax
xa, ya, xb, yb = xa, ya, xb, yb
row_img_cropped = row_img.crop((xa, ya, xb, yb))
row_img_list.append(row_img_cropped)
cells_img[k_row + '.' + str(row_idx)] = row_img_list
row_idx += 1
return cells_img, len(new_cols), len(new_master_row) - 1
def clean_dataframe(self, df):
'''
Remove irrelevant symbols that appear with tesseractOCR
'''
# df.columns = [col.replace('|', '') for col in df.columns]
for col in df.columns:
df[col] = df[col].str.replace("'", '', regex=True)
df[col] = df[col].str.replace('"', '', regex=True)
df[col] = df[col].str.replace(']', '', regex=True)
df[col] = df[col].str.replace('[', '', regex=True)
df[col] = df[col].str.replace('{', '', regex=True)
df[col] = df[col].str.replace('}', '', regex=True)
return df
@st.cache
def convert_df(self, df):
return df.to_csv().encode('utf-8')
def create_dataframe(self, c3, cell_ocr_res: list, max_cols: int,
max_rows: int):
'''Create dataframe using list of cell values of the table, also checks for valid header of dataframe
Args:
cell_ocr_res: list of strings, each element representing a cell in a table
max_cols, max_rows: number of columns and rows
Returns:
dataframe : final dataframe after all pre-processing
'''
headers = cell_ocr_res[:max_cols]
new_headers = uniquify(headers,
(f' {x!s}' for x in string.ascii_lowercase))
counter = 0
cells_list = cell_ocr_res[max_cols:]
df = pd.DataFrame("", index=range(0, max_rows), columns=new_headers)
cell_idx = 0
for nrows in range(max_rows):
for ncols in range(max_cols):
df.iat[nrows, ncols] = str(cells_list[cell_idx])
cell_idx += 1
## To check if there are duplicate headers if result of uniquify+col == col
## This check removes headers when all headers are empty or if median of header word count is less than 6
for x, col in zip(string.ascii_lowercase, new_headers):
if f' {x!s}' == col:
counter += 1
header_char_count = [len(col) for col in new_headers]
# if (counter == len(new_headers)) or (statistics.median(header_char_count) < 6):
# st.write('woooot')
# df.columns = uniquify(df.iloc[0], (f' {x!s}' for x in string.ascii_lowercase))
# df = df.iloc[1:,:]
df = self.clean_dataframe(df)
c3.dataframe(df)
csv = self.convert_df(df)
c3.download_button("Download table",
csv,
"file.csv",
"text/csv",
key='download-csv-' + df.iloc[0, 0])
return df
async def start_process(self, image_path: str, TD_THRESHOLD, TSR_THRESHOLD,
OCR_THRESHOLD, padd_top, padd_left, padd_bottom,
padd_right, delta_xmin, delta_ymin, delta_xmax,
delta_ymax, expand_rowcol_bbox_top,
expand_rowcol_bbox_bottom):
'''
Initiates process of generating pandas dataframes from raw pdf-page images
'''
image = Image.open(image_path).convert("RGB")
probas, bboxes_scaled = table_detector(image,
THRESHOLD_PROBA=TD_THRESHOLD)
if bboxes_scaled.nelement() == 0:
st.write('No table found in the pdf-page image')
return ''
# try:
# st.write('Document: '+image_path.split('/')[-1])
c1, c2, c3 = st.columns((1, 1, 1))
self.plot_results_detection(c1, table_detection_model, image, probas,
bboxes_scaled, delta_xmin, delta_ymin,
delta_xmax, delta_ymax)
cropped_img_list = self.crop_tables(image, probas, bboxes_scaled,
delta_xmin, delta_ymin, delta_xmax,
delta_ymax)
for idx, unpadded_table in enumerate(cropped_img_list):
table = self.add_padding(unpadded_table, padd_top, padd_right,
padd_bottom, padd_left)
# table = super_res(table)
# table = binarizeBlur_image(table)
# table = sharpen_image(table) # Test sharpen image next
# table = td_postprocess(table)
# table.save("result"+str(idx)+".png")
probas, bboxes_scaled = table_struct_recog(
table, THRESHOLD_PROBA=TSR_THRESHOLD)
rows, cols = self.generate_structure(c2, table_recognition_model,
table, probas, bboxes_scaled,
expand_rowcol_bbox_top,
expand_rowcol_bbox_bottom)
# st.write(len(rows), len(cols))
rows, cols = self.sort_table_featuresv2(rows, cols)
master_row, cols = self.individual_table_featuresv2(
table, rows, cols)
cells_img, max_cols, max_rows = self.object_to_cellsv2(
master_row, cols, expand_rowcol_bbox_top,
expand_rowcol_bbox_bottom, padd_left)
sequential_cell_img_list = []
for k, img_list in cells_img.items():
for img in img_list:
# img = super_res(img)
# img = sharpen_image(img) # Test sharpen image next
# img = binarizeBlur_image(img)
# img = self.add_padding(img, 10,10,10,10)
# plt.imshow(img)
# c3.pyplot()
sequential_cell_img_list.append(
pytess(cell_pil_img=img, threshold=OCR_THRESHOLD))
cell_ocr_res = await asyncio.gather(*sequential_cell_img_list)
self.create_dataframe(c3, cell_ocr_res, max_cols, max_rows)
st.write(
'Errors in OCR is due to either quality of the image or performance of the OCR'
)
# except:
# st.write('Either incorrectly identified table or no table, to debug remove try/except')
# break
# break
if __name__ == "__main__":
img_name = st.file_uploader("Upload an image with table(s)")
st1, st2, st3 = st.columns((1, 1, 1))
TD_th = st1.slider('Table detection threshold', 0.0, 1.0, 0.8)
TSR_th = st2.slider('Table structure recognition threshold', 0.0, 1.0, 0.7)
OCR_th = st3.slider("Text Probs Threshold", 0.0, 1.0, 0.5)
st1, st2, st3, st4 = st.columns((1, 1, 1, 1))
padd_top = st1.slider('Padding top', 0, 200, 90)
padd_left = st2.slider('Padding left', 0, 200, 40)
padd_right = st3.slider('Padding right', 0, 200, 40)
padd_bottom = st4.slider('Padding bottom', 0, 200, 90)
te = TableExtractionPipeline()
# for img in image_list:
if img_name is not None:
asyncio.run(
te.start_process(img_name,
TD_THRESHOLD=TD_th,
TSR_THRESHOLD=TSR_th,
OCR_THRESHOLD=OCR_th,
padd_top=padd_top,
padd_left=padd_left,
padd_bottom=padd_bottom,
padd_right=padd_right,
delta_xmin=10, # add offset to the left of the table
delta_ymin=3, # add offset to the bottom of the table
delta_xmax=10, # add offset to the right of the table
delta_ymax=3, # add offset to the top of the table
expand_rowcol_bbox_top=0,
expand_rowcol_bbox_bottom=0))
|