import streamlit as st import ollama import os import logging from langchain_ollama import ChatOllama from langchain_community.document_loaders import PyPDFLoader from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_ollama import OllamaEmbeddings import faiss from langchain_community.vectorstores import FAISS from langchain_community.docstore.in_memory import InMemoryDocstore from langchain import hub from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough from langchain_core.prompts import ChatPromptTemplate from langchain_cohere import CohereEmbeddings from typing import List, Tuple, Dict, Any, Optional # pip install -qU langchain-ollama # pip install langchain ##### Logging def format_docs(docs): return "\n\n".join([doc.page_content for doc in docs]) @st.cache_resource(show_spinner=True) def extract_model_names( models_info: Dict[str, List[Dict[str, Any]]], ) -> Tuple[str, ...]: """ Extract model names from the provided models information. Args: models_info (Dict[str, List[Dict[str, Any]]]): Dictionary containing information about available models. Returns: Tuple[str, ...]: A tuple of model names. """ # Logging configuration logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", ) logger = logging.getLogger(__name__) logger.info("Extracting model names from models_info") model_names = tuple(model["name"] for model in models_info["models"]) logger.info(f"Extracted model names: {model_names}") return model_names def generate_response(rag_chain, input_text): response = rag_chain.invoke(input_text) return response def get_pdf(uploaded_file): temp_file = "./temp.pdf" if uploaded_file : #temp_file = "./temp.pdf" # Delete the existing temp.pdf file if it exists if os.path.exists(temp_file): os.remove(temp_file) with open(temp_file, "wb") as file: file.write(uploaded_file.getvalue()) file_name = uploaded_file.name loader = PyPDFLoader(temp_file) docs = loader.load() return docs def main() -> None: st.title("🧠 This is a RAG Chatbot with Ollama and Langchain !!!") st.write("The LLM model Llama-3.2 is used") st.write("You can upload a PDF to chat with !!!") with st.sidebar: st.title("PDF FILE UPLOAD:") docs = st.file_uploader("Upload your PDF File and Click on the Submit & Process Button", accept_multiple_files=False, key="pdf_uploader") text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) raw_text = get_pdf(docs) chunks = text_splitter.split_documents(raw_text) #embeddings = OllamaEmbeddings(model='nomic-ai/nomic-embed-text-v1.5', base_url="http://localhost:11434") embeddings = OllamaEmbeddings(model='nomic-embed-text', base_url="http://ollama:11434") single_vector = embeddings.embed_query("this is some text data") index = faiss.IndexFlatL2(len(single_vector)) vector_store = FAISS( embedding_function=embeddings, index=index, docstore=InMemoryDocstore(), index_to_docstore_id={} ) ids = vector_store.add_documents(documents=chunks) ## Retreival retriever = vector_store.as_retriever(search_type="mmr", search_kwargs = {'k': 3, 'fetch_k': 100, 'lambda_mult': 1}) prompt = """ You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Answer in bullet points. Make sure your answer is relevant to the question and it is answered from the context only. Question: {question} Context: {context} Answer: """ prompt = ChatPromptTemplate.from_template(prompt) ## from llama3.2:latest to unsloth/Llama-3.2-3B model = ChatOllama(model="unsloth/Llama-3.2-3B") rag_chain = ( {"context": retriever|format_docs, "question": RunnablePassthrough()} | prompt | model | StrOutputParser() ) with st.form("llm-form"): text = st.text_area("Enter your question or statement:") submit = st.form_submit_button("Submit") if "chat_history" not in st.session_state: st.session_state['chat_history'] = [] if submit and text: with st.spinner("Generating response..."): response = generate_response(rag_chain, text) st.session_state['chat_history'].append({"user": text, "ollama": response}) st.write(response) st.write("## Chat History") for chat in reversed(st.session_state['chat_history']): st.write(f"**🧑 User**: {chat['user']}") st.write(f"**🧠 Assistant**: {chat['ollama']}") st.write("---") if __name__ == "__main__": main()