import yfinance as yf import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import streamlit as st # Step 1: Define a function to fetch real-time market data def fetch_data(ticker_symbol): ticker = yf.Ticker(ticker_symbol) data = ticker.history(period="1y") # Fetches 1 year of historical data return data # Step 2: Define a function to calculate indicators def calculate_indicators(df, lengthEMA=3, lengthRSI=14, momentumLength=3, trendLength=50): # Calculate Moving Averages df['MA20'] = df['Close'].rolling(window=20).mean() df['MA50'] = df['Close'].rolling(window=50).mean() # Calculate EMA for Buy Signal buy_signal = df['Close'] - df['Open'] df['SignalEMA'] = df['Close'].ewm(span=lengthEMA, adjust=False).mean() # Calculate RSI delta = df['Close'].diff(1) gain = (delta.where(delta > 0, 0)).rolling(window=lengthRSI).mean() loss = (-delta.where(delta < 0, 0)).rolling(window=lengthRSI).mean() rs = gain / loss df['RSI'] = 100 - (100 / (1 + rs)) # Calculate Momentum df['Momentum'] = df['Close'].diff(momentumLength) # Composite SIGNAL Calculation df['SignalComposite'] = (0.5 * df['SignalEMA']) + (0.3 * (df['RSI'] - 50) / 100) + (0.2 * (df['Momentum'] / df['Close'].rolling(window=lengthRSI).mean())) # Smooth the Composite SIGNAL with EMA df['SmoothedSignal'] = df['SignalComposite'].ewm(span=lengthEMA, adjust=False).mean() # Trend Filter (SMA) df['TrendSMA'] = df['Close'].rolling(window=trendLength).mean() # Buy and Sell Signals buyThreshold = 0.75 sellThreshold = -0.75 df['BuySignal'] = (df['SmoothedSignal'] > buyThreshold) & (df['Close'] > df['TrendSMA']) df['SellSignal'] = (df['SmoothedSignal'] < sellThreshold) & (df['Close'] < df['TrendSMA']) return df # Step 3: Streamlit UI Setup for Stock Selection st.title("Indian Share Market Analysis") # Add a stock selector input box st.sidebar.header("Select Stock Ticker") ticker_symbol = st.sidebar.text_input("Enter Stock Ticker (e.g., RELIANCE.NS, ^NSEI)", "^NSEI") # Step 4: Fetch Data and Calculate Indicators nifty_data = fetch_data(ticker_symbol) nifty_data = calculate_indicators(nifty_data) # Step 5: Display Stock Data st.subheader(f"Data Overview for {ticker_symbol}") st.write(nifty_data.head()) # Step 6: Visualizations st.subheader(f"Close Price for {ticker_symbol}") fig, ax = plt.subplots(figsize=(12, 6)) sns.lineplot(x=nifty_data.index, y=nifty_data['Close']) st.pyplot(fig) st.subheader(f"Moving Averages, EMA, and RSI for {ticker_symbol}") fig, ax = plt.subplots(figsize=(12, 6)) sns.lineplot(x=nifty_data.index, y=nifty_data['MA20'], label='MA20') sns.lineplot(x=nifty_data.index, y=nifty_data['MA50'], label='MA50') sns.lineplot(x=nifty_data.index, y=nifty_data['RSI'], label='RSI') plt.axhline(y=70, color='red', linestyle='--', label='Overbought (70)') plt.axhline(y=30, color='green', linestyle='--', label='Oversold (30)') plt.legend() plt.title("Moving Averages and RSI") st.pyplot(fig) # Step 7: Buy and Sell Signals Visualization st.subheader(f"Buy and Sell Signals for {ticker_symbol}") fig, ax = plt.subplots(figsize=(12, 6)) sns.lineplot(x=nifty_data.index, y=nifty_data['Close'], label='Close Price', color='blue') sns.lineplot(x=nifty_data.index, y=nifty_data['TrendSMA'], label='Trend SMA', color='gray') # Plot Buy Signals buy_signals = nifty_data[nifty_data['BuySignal']] plt.scatter(buy_signals.index, buy_signals['Close'], marker='^', color='green', label='Buy Signal', s=100) # Plot Sell Signals sell_signals = nifty_data[nifty_data['SellSignal']] plt.scatter(sell_signals.index, sell_signals['Close'], marker='v', color='red', label='Sell Signal', s=100) plt.legend() plt.title("Buy and Sell Signals with Trend Filter") st.pyplot(fig) # Step 8: Interactive Timeframe Selection and Alerts st.sidebar.subheader("Select Timeframe:") timeframes = ['15m', '60m', '1d', '5d', '1mo', '3mo', '6mo', '1y', '2y', '5y', '10y', 'ytd', 'max'] selected_timeframe = st.sidebar.selectbox('Timeframe', timeframes) st.sidebar.subheader("Set Alerts:") alert_type = st.sidebar.selectbox('Alert Type', ['Price', 'RSI']) alert_value = st.sidebar.number_input('Enter Alert Value') # Step 9: Run the Streamlit App (Note: Do not use st.run()) # Save as `app.py` and run it using `streamlit run app.py`