import yfinance as yf import pandas as pd import numpy as np import plotly.graph_objects as go import streamlit as st from datetime import datetime # Step 1: Define a function to fetch real-time market data up to the current date def fetch_data(ticker_symbol): ticker = yf.Ticker(ticker_symbol) end_date = datetime.now().strftime('%Y-%m-%d') # Get the current date data = ticker.history(start="2023-01-01", end=end_date) # Fetches data from the start of this year to the current date return data # Step 2: Define a function to calculate indicators def calculate_indicators(df, lengthEMA=3, lengthRSI=14, momentumLength=3, trendLength=50): # Calculate Moving Averages df['MA20'] = df['Close'].rolling(window=20).mean() df['MA50'] = df['Close'].rolling(window=50).mean() # Calculate EMA for Buy Signal buy_signal = df['Close'] - df['Open'] df['SignalEMA'] = df['Close'].ewm(span=lengthEMA, adjust=False).mean() # Calculate RSI delta = df['Close'].diff(1) gain = (delta.where(delta > 0, 0)).rolling(window=lengthRSI).mean() loss = (-delta.where(delta < 0, 0)).rolling(window=lengthRSI).mean() rs = gain / loss df['RSI'] = 100 - (100 / (1 + rs)) # Calculate Momentum df['Momentum'] = df['Close'].diff(momentumLength) # Composite SIGNAL Calculation df['SignalComposite'] = (0.5 * df['SignalEMA']) + (0.3 * (df['RSI'] - 50) / 100) + (0.2 * (df['Momentum'] / df['Close'].rolling(window=lengthRSI).mean())) # Smooth the Composite SIGNAL with EMA df['SmoothedSignal'] = df['SignalComposite'].ewm(span=lengthEMA, adjust=False).mean() # Trend Filter (SMA) df['TrendSMA'] = df['Close'].rolling(window=trendLength).mean() # Buy and Sell Signals buyThreshold = 0.75 sellThreshold = -0.75 df['BuySignal'] = (df['SmoothedSignal'] > buyThreshold) & (df['Close'] > df['TrendSMA']) df['SellSignal'] = (df['SmoothedSignal'] < sellThreshold) & (df['Close'] < df['TrendSMA']) return df # Step 3: Streamlit UI Setup for Stock Selection st.title("Indian Share Market Analysis") # Add a stock selector input box st.sidebar.header("Select Stock Ticker") ticker_symbol = st.sidebar.text_input("Enter Stock Ticker (e.g., RELIANCE.NS, ^NSEI)", "^NSEI") # Step 4: Fetch Data and Calculate Indicators nifty_data = fetch_data(ticker_symbol) nifty_data = calculate_indicators(nifty_data) # Step 5: Display Stock Data st.subheader(f"Data Overview for {ticker_symbol}") st.write(nifty_data.head()) # Step 6: Visualizations using Plotly for Interactivity st.subheader(f"Buy and Sell Signals for {ticker_symbol}") # Create a Plotly figure fig = go.Figure() # Add Close Price line fig.add_trace(go.Scatter( x=nifty_data.index, y=nifty_data['Close'], mode='lines', name='Close Price', line=dict(color='blue') )) # Add Trend SMA line fig.add_trace(go.Scatter( x=nifty_data.index, y=nifty_data['TrendSMA'], mode='lines', name='Trend SMA', line=dict(color='gray') )) # Plot Buy Signals buy_signals = nifty_data[nifty_data['BuySignal']] fig.add_trace(go.Scatter( x=buy_signals.index, y=buy_signals['Close'], mode='markers', name='Buy Signal', marker=dict(symbol='triangle-up', color='green', size=10) )) # Plot Sell Signals sell_signals = nifty_data[nifty_data['SellSignal']] fig.add_trace(go.Scatter( x=sell_signals.index, y=sell_signals['Close'], mode='markers', name='Sell Signal', marker=dict(symbol='triangle-down', color='red', size=10) )) # Update layout for better readability fig.update_layout( title=f"Buy and Sell Signals with Trend Filter for {ticker_symbol}", xaxis_title="Date", yaxis_title="Close Price", legend_title="Legend", template="plotly_dark" ) # Show Plotly figure in Streamlit st.plotly_chart(fig) # Step 7: Interactive Timeframe Selection and Alerts st.sidebar.subheader("Select Timeframe:") timeframes = ['1d', '5d', '1mo', '3mo', '6mo', '1y', '2y', '5y', '10y', 'ytd', 'max'] selected_timeframe = st.sidebar.selectbox('Timeframe', timeframes) st.sidebar.subheader("Set Alerts:") alert_type = st.sidebar.selectbox('Alert Type', ['Price', 'RSI']) alert_value = st.sidebar.number_input('Enter Alert Value') # Step 8: Run the Streamlit App (Note: Do not use st.run()) # Save as `app.py` and run it using `streamlit run app.py`