|
import yfinance as yf |
|
import pandas as pd |
|
import numpy as np |
|
import plotly.graph_objects as go |
|
import streamlit as st |
|
from datetime import datetime |
|
|
|
# Step 1: Define a function to fetch real-time market data up to the current date |
|
def fetch_data(ticker_symbol): |
|
ticker = yf.Ticker(ticker_symbol) |
|
end_date = datetime.now().strftime('%Y-%m-%d') # Get the current date |
|
data = ticker.history(start="2023-01-01", end=end_date) # Fetches data from the start of this year to the current date |
|
return data |
|
|
|
# Step 2: Define a function to calculate indicators |
|
def calculate_indicators(df, lengthEMA=3, lengthRSI=14, momentumLength=3, trendLength=50): |
|
# Calculate Moving Averages |
|
df['MA20'] = df['Close'].rolling(window=20).mean() |
|
df['MA50'] = df['Close'].rolling(window=50).mean() |
|
|
|
# Calculate EMA for Buy Signal |
|
buy_signal = df['Close'] - df['Open'] |
|
df['SignalEMA'] = df['Close'].ewm(span=lengthEMA, adjust=False).mean() |
|
|
|
# Calculate RSI |
|
delta = df['Close'].diff(1) |
|
gain = (delta.where(delta > 0, 0)).rolling(window=lengthRSI).mean() |
|
loss = (-delta.where(delta < 0, 0)).rolling(window=lengthRSI).mean() |
|
rs = gain / loss |
|
df['RSI'] = 100 - (100 / (1 + rs)) |
|
|
|
# Calculate Momentum |
|
df['Momentum'] = df['Close'].diff(momentumLength) |
|
|
|
# Composite SIGNAL Calculation |
|
df['SignalComposite'] = (0.5 * df['SignalEMA']) + (0.3 * (df['RSI'] - 50) / 100) + (0.2 * (df['Momentum'] / df['Close'].rolling(window=lengthRSI).mean())) |
|
|
|
# Smooth the Composite SIGNAL with EMA |
|
df['SmoothedSignal'] = df['SignalComposite'].ewm(span=lengthEMA, adjust=False).mean() |
|
|
|
# Trend Filter (SMA) |
|
df['TrendSMA'] = df['Close'].rolling(window=trendLength).mean() |
|
|
|
# Buy and Sell Signals |
|
buyThreshold = 0.75 |
|
sellThreshold = -0.75 |
|
df['BuySignal'] = (df['SmoothedSignal'] > buyThreshold) & (df['Close'] > df['TrendSMA']) |
|
df['SellSignal'] = (df['SmoothedSignal'] < sellThreshold) & (df['Close'] < df['TrendSMA']) |
|
|
|
return df |
|
|
|
# Step 3: Streamlit UI Setup for Stock Selection |
|
st.title("Indian Share Market Analysis") |
|
|
|
# Add a stock selector input box |
|
st.sidebar.header("Select Stock Ticker") |
|
ticker_symbol = st.sidebar.text_input("Enter Stock Ticker (e.g., RELIANCE.NS, ^NSEI)", "^NSEI") |
|
|
|
# Step 4: Fetch Data and Calculate Indicators |
|
nifty_data = fetch_data(ticker_symbol) |
|
nifty_data = calculate_indicators(nifty_data) |
|
|
|
# Step 5: Display Stock Data |
|
st.subheader(f"Data Overview for {ticker_symbol}") |
|
st.write(nifty_data.head()) |
|
|
|
# Step 6: Visualizations using Plotly for Interactivity |
|
st.subheader(f"Buy and Sell Signals for {ticker_symbol}") |
|
|
|
# Create a Plotly figure |
|
fig = go.Figure() |
|
|
|
# Add Close Price line |
|
fig.add_trace(go.Scatter( |
|
x=nifty_data.index, |
|
y=nifty_data['Close'], |
|
mode='lines', |
|
name='Close Price', |
|
line=dict(color='blue') |
|
)) |
|
|
|
# Add Trend SMA line |
|
fig.add_trace(go.Scatter( |
|
x=nifty_data.index, |
|
y=nifty_data['TrendSMA'], |
|
mode='lines', |
|
name='Trend SMA', |
|
line=dict(color='gray') |
|
)) |
|
|
|
# Plot Buy Signals |
|
buy_signals = nifty_data[nifty_data['BuySignal']] |
|
fig.add_trace(go.Scatter( |
|
x=buy_signals.index, |
|
y=buy_signals['Close'], |
|
mode='markers', |
|
name='Buy Signal', |
|
marker=dict(symbol='triangle-up', color='green', size=10) |
|
)) |
|
|
|
# Plot Sell Signals |
|
sell_signals = nifty_data[nifty_data['SellSignal']] |
|
fig.add_trace(go.Scatter( |
|
x=sell_signals.index, |
|
y=sell_signals['Close'], |
|
mode='markers', |
|
name='Sell Signal', |
|
marker=dict(symbol='triangle-down', color='red', size=10) |
|
)) |
|
|
|
# Update layout for better readability |
|
fig.update_layout( |
|
title=f"Buy and Sell Signals with Trend Filter for {ticker_symbol}", |
|
xaxis_title="Date", |
|
yaxis_title="Close Price", |
|
legend_title="Legend", |
|
template="plotly_dark" |
|
) |
|
|
|
# Show Plotly figure in Streamlit |
|
st.plotly_chart(fig) |
|
|
|
# Step 7: Interactive Timeframe Selection and Alerts |
|
st.sidebar.subheader("Select Timeframe:") |
|
timeframes = ['1d', '5d', '1mo', '3mo', '6mo', '1y', '2y', '5y', '10y', 'ytd', 'max'] |
|
selected_timeframe = st.sidebar.selectbox('Timeframe', timeframes) |
|
|
|
st.sidebar.subheader("Set Alerts:") |
|
alert_type = st.sidebar.selectbox('Alert Type', ['Price', 'RSI']) |
|
alert_value = st.sidebar.number_input('Enter Alert Value') |
|
|
|
# Step 8: Run the Streamlit App (Note: Do not use st.run()) |
|
# Save as `app.py` and run it using `streamlit run app.py` |
|
|