File size: 6,548 Bytes
540c62b
 
 
 
 
1229b10
 
 
540c62b
1229b10
540c62b
a74dbcb
 
7ece375
 
a74dbcb
7ece375
 
 
 
 
 
540c62b
 
 
7ece375
 
 
540c62b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97600c5
1229b10
540c62b
 
 
 
 
 
 
97600c5
 
 
 
 
 
 
 
 
 
 
540c62b
 
 
 
1229b10
a74dbcb
540c62b
 
7ece375
540c62b
f353842
a74dbcb
 
 
 
8581a28
540c62b
 
a74dbcb
540c62b
 
7ece375
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a74dbcb
7ece375
 
 
 
 
 
 
 
a74dbcb
7ece375
 
 
 
 
 
 
 
 
 
a74dbcb
7ece375
 
 
 
 
 
1229b10
540c62b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import yfinance as yf
import pandas as pd
import numpy as np
import plotly.graph_objects as go
import streamlit as st
import altair as alt
from bs4 import BeautifulSoup
import requests
from datetime import datetime
from rich import print

# Step 1: Define a function to fetch real-time market data for the selected timeframe
def fetch_data(ticker_symbol, selected_timeframe):
    try:
        ticker = yf.Ticker(ticker_symbol)
        data = ticker.history(period=selected_timeframe)  # Fetches data based on selected timeframe
        if data.empty:
            raise ValueError("No data found for the given ticker. Please check the ticker symbol.")
        return data
    except Exception as e:
        st.error(f"An error occurred while fetching data: {str(e)}")
        return pd.DataFrame()

# Step 2: Define a function to calculate indicators
def calculate_indicators(df, lengthEMA=3, lengthRSI=14, momentumLength=3, trendLength=50):
    if df.empty:
        return df

    # Calculate Moving Averages
    df['MA20'] = df['Close'].rolling(window=20).mean()
    df['MA50'] = df['Close'].rolling(window=50).mean()

    # Calculate EMA for Buy Signal
    df['SignalEMA'] = df['Close'].ewm(span=lengthEMA, adjust=False).mean()

    # Calculate RSI
    delta = df['Close'].diff(1)
    gain = (delta.where(delta > 0, 0)).rolling(window=lengthRSI).mean()
    loss = (-delta.where(delta < 0, 0)).rolling(window=lengthRSI).mean()
    rs = gain / loss
    df['RSI'] = 100 - (100 / (1 + rs))

    # Calculate Momentum
    df['Momentum'] = df['Close'].diff(momentumLength)

    # Composite SIGNAL Calculation with Dynamic Adjustments
    df['SignalComposite'] = (0.5 * df['SignalEMA']) + (0.3 * (df['RSI'] - 50) / 100) + (0.2 * (df['Momentum'] / df['Close'].rolling(window=lengthRSI).mean()))

    # Smooth the Composite SIGNAL with EMA
    df['SmoothedSignal'] = df['SignalComposite'].ewm(span=lengthEMA, adjust=False).mean()

    # Trend Filter (SMA)
    df['TrendSMA'] = df['Close'].rolling(window=trendLength).mean()

    # Adjusted Buy and Sell Thresholds
    buyThreshold = 1.5  # Increased threshold for stronger signals
    sellThreshold = -1.5

    # Buy and Sell Signals with Momentum Condition
    df['BuySignal'] = (df['SmoothedSignal'] > buyThreshold) & (df['Close'] > df['TrendSMA']) & (df['Momentum'] > 0)
    df['SellSignal'] = (df['SmoothedSignal'] < sellThreshold) & (df['Close'] < df['TrendSMA']) & (df['Momentum'] < 0)

    # Add Cooldown Logic to Reduce Repeated Signals
    df['BuySignal'] = df['BuySignal'] & ~df['BuySignal'].shift(1).fillna(False)
    df['SellSignal'] = df['SellSignal'] & ~df['SellSignal'].shift(1).fillna(False)

    return df

# Step 3: Streamlit UI Setup for Stock Selection
st.title("Advanced Indian Share Market Analysis")
st.sidebar.header("Select Stock Ticker and Timeframe")

# Add a stock selector input box
ticker_symbol = st.sidebar.text_input("Enter Stock Ticker (e.g., RELIANCE.NS for NSE or TCS.BO for BSE)", "^NSEI")

# Step 7: Interactive Timeframe Selection and Alerts
st.sidebar.subheader("Select Timeframe:")
timeframes = ['1d', '5d', '1mo', '3mo', '6mo', '1y', '2y', '5y', '10y', 'ytd', 'max']
selected_timeframe = st.sidebar.selectbox('Timeframe', timeframes)


# Step 4: Fetch Data and Calculate Indicators
try:
    nifty_data = fetch_data(ticker_symbol, selected_timeframe)
    nifty_data = calculate_indicators(nifty_data)

    # Step 5: Display Stock Data if available
    if not nifty_data.empty:
        st.subheader(f"Data Overview for {ticker_symbol}")
        st.write(nifty_data.tail())

        # Step 6: Interactive Visualization Using Plotly
        st.subheader(f"Interactive Buy and Sell Signals for {ticker_symbol}")
        fig = go.Figure()

        # Add Close Price line
        fig.add_trace(go.Scatter(
            x=nifty_data.index,
            y=nifty_data['Close'],
            mode='lines',
            name='Close Price',
            line=dict(color='blue')
        ))

        # Add Trend SMA line
        fig.add_trace(go.Scatter(
            x=nifty_data.index,
            y=nifty_data['TrendSMA'],
            mode='lines',
            name='Trend SMA',
            line=dict(color='gray')
        ))

        # Plot Buy Signals
        buy_signals = nifty_data[nifty_data['BuySignal']]
        fig.add_trace(go.Scatter(
            x=buy_signals.index,
            y=buy_signals['Close'],
            mode='markers',
            name='Buy Signal',
            marker=dict(symbol='triangle-up', color='green', size=10)
        ))

        # Plot Sell Signals
        sell_signals = nifty_data[nifty_data['SellSignal']]
        fig.add_trace(go.Scatter(
            x=sell_signals.index,
            y=sell_signals['Close'],
            mode='markers',
            name='Sell Signal',
            marker=dict(symbol='triangle-down', color='red', size=10)
        ))

        # Update layout for better readability
        fig.update_layout(
            title=f"Buy and Sell Signals with Trend Filter for {ticker_symbol}",
            xaxis_title="Date",
            yaxis_title="Close Price",
            legend_title="Legend",
            template="plotly_dark"
        )

        st.plotly_chart(fig)

        # Step 8: Altair Chart for Moving Averages
        st.subheader(f"Moving Averages for {ticker_symbol}")
        alt_chart = alt.Chart(nifty_data.reset_index()).mark_line().encode(
            x='Date:T',
            y=alt.Y('MA20:Q', title='Moving Average (20-day)'),
            color=alt.value('orange')
        ).properties(title="20-Day Moving Average")
        st.altair_chart(alt_chart, use_container_width=True)

        # Step 9: Market News Integration Using BeautifulSoup
        st.sidebar.header("Latest Market News")
        news_url = 'https://www.moneycontrol.com/news/'
        response = requests.get(news_url)
        soup = BeautifulSoup(response.content, 'html.parser')

        headlines = [headline.text for headline in soup.find_all('h2')[:5]]
        st.sidebar.subheader("Top 5 News Headlines")
        for idx, headline in enumerate(headlines, 1):
            st.sidebar.write(f"{idx}. {headline}")

        # Step 10: Alerts Using Rich Library
        st.sidebar.subheader("Set Alerts:")
        alert_type = st.sidebar.selectbox('Alert Type', ['Price', 'RSI'])
        alert_value = st.sidebar.number_input('Enter Alert Value')

        if alert_value:
            print(f"[bold cyan]Alert Set for {alert_type} at Value:[/bold cyan] {alert_value}")

except Exception as e:
    st.error(f"An error occurred: {str(e)}")