Spaces:
Sleeping
Sleeping
rifatramadhani
commited on
Commit
·
e9bfaac
1
Parent(s):
e2a85dd
feat: gibberish detection
Browse files
app.py
CHANGED
@@ -1,7 +1,50 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
import torch
|
4 |
+
from transformers import pipeline
|
5 |
+
import datetime
|
6 |
+
import json
|
7 |
+
import logging
|
8 |
|
9 |
+
model_path = "madhurjindal/autonlp-Gibberish-Detector-492513457"
|
10 |
+
# Load model for first time cache
|
11 |
+
gibberish_detection_task = pipeline("text-classification", model=model_path, tokenizer=model_path)
|
12 |
|
13 |
+
@spaces.GPU
|
14 |
+
def classify(query):
|
15 |
+
torch_device = 0 if torch.cuda.is_available() else -1
|
16 |
+
tokenizer_kwargs = {'truncation':True,'max_length':512}
|
17 |
+
|
18 |
+
gibberish_detection_task = pipeline("text-classification", model=model_path, tokenizer=model_path, device=torch_device)
|
19 |
+
|
20 |
+
request_type = type(query)
|
21 |
+
try:
|
22 |
+
data = json.loads(query)
|
23 |
+
if type(data) != list:
|
24 |
+
data = [query]
|
25 |
+
else:
|
26 |
+
request_type = type(data)
|
27 |
+
except Exception as e:
|
28 |
+
print(e)
|
29 |
+
data = [query]
|
30 |
+
pass
|
31 |
+
|
32 |
+
start_time = datetime.datetime.now()
|
33 |
+
|
34 |
+
result = gibberish_detection_task(data, batch_size=128, top_k=4, **tokenizer_kwargs)
|
35 |
+
|
36 |
+
end_time = datetime.datetime.now()
|
37 |
+
elapsed_time = end_time - start_time
|
38 |
+
|
39 |
+
logging.debug("elapsed predict time: %s", str(elapsed_time))
|
40 |
+
print("elapsed predict time:", str(elapsed_time))
|
41 |
+
|
42 |
+
output = {}
|
43 |
+
output["time"] = str(elapsed_time)
|
44 |
+
output["device"] = torch_device
|
45 |
+
output["result"] = result
|
46 |
+
|
47 |
+
return json.dumps(output)
|
48 |
+
|
49 |
+
demo = gr.Interface(fn=classify, inputs=["text"], outputs="text")
|
50 |
+
demo.launch()
|