File size: 12,854 Bytes
262b155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import os.path
from typing import Any, Callable, List, Optional, Tuple

from PIL import Image

from torchvision.datasets.vision import VisionDataset
import pickle
import csv
import pandas as pd
import torch
import torchvision
import re
# from torchvision.datasets import CocoDetection
# from utils.clip_filter import Clip_filter
from tqdm import tqdm
from .mypath import MyPath

class CocoDetection(VisionDataset):
    """`MS Coco Detection <https://cocodataset.org/#detection-2016>`_ Dataset.



    It requires the `COCO API to be installed <https://github.com/pdollar/coco/tree/master/PythonAPI>`_.



    Args:

        root (string): Root directory where images are downloaded to.

        annFile (string): Path to json annotation file.

        transform (callable, optional): A function/transform that  takes in an PIL image

            and returns a transformed version. E.g, ``transforms.PILToTensor``

        target_transform (callable, optional): A function/transform that takes in the

            target and transforms it.

        transforms (callable, optional): A function/transform that takes input sample and its target as entry

            and returns a transformed version.

    """

    def __init__(

            self,

            root: str ,

            annFile: str,

            transform: Optional[Callable] = None,

            target_transform: Optional[Callable] = None,

            transforms: Optional[Callable] = None,

            get_img=True,

            get_cap=True

    ) -> None:
        super().__init__(root, transforms, transform, target_transform)
        from pycocotools.coco import COCO

        self.coco = COCO(annFile)
        self.ids = list(sorted(self.coco.imgs.keys()))
        self.column_names = ["image", "text"]
        self.get_img = get_img
        self.get_cap = get_cap

    def _load_image(self, id: int) -> Image.Image:
        path = self.coco.loadImgs(id)[0]["file_name"]
        with open(os.path.join(self.root, path), 'rb') as f:
            img = Image.open(f).convert("RGB")

        return img

    def _load_target(self, id: int) -> List[Any]:
        return self.coco.loadAnns(self.coco.getAnnIds(id))

    def __getitem__(self, index: int) -> Tuple[Any, Any]:
        id = self.ids[index]
        ret={"id":id}
        if self.get_img:
            image = self._load_image(id)
            ret["image"] = image
        if self.get_cap:
            target = self._load_target(id)
            ret["caption"] = [target]

        if self.transforms is not None:
            ret = self.transforms(ret)

        return ret

    def subsample(self, n: int = 10000):
        if n is None or n == -1:
            return self
        ori_len = len(self)
        assert n <= ori_len
        # equal interval subsample
        ids = self.ids[::ori_len // n][:n]
        self.ids = ids
        print(f"COCO dataset subsampled from {ori_len} to {len(self)}")
        return self


    def with_transform(self, transform):
        self.transforms = transform
        return self

    def __len__(self) -> int:
        # return 100
        return len(self.ids)


class CocoCaptions(CocoDetection):
    """`MS Coco Captions <https://cocodataset.org/#captions-2015>`_ Dataset.



    It requires the `COCO API to be installed <https://github.com/pdollar/coco/tree/master/PythonAPI>`_.



    Args:

        root (string): Root directory where images are downloaded to.

        annFile (string): Path to json annotation file.

        transform (callable, optional): A function/transform that  takes in an PIL image

            and returns a transformed version. E.g, ``transforms.PILToTensor``

        target_transform (callable, optional): A function/transform that takes in the

            target and transforms it.

        transforms (callable, optional): A function/transform that takes input sample and its target as entry

            and returns a transformed version.



    Example:



        .. code:: python



            import torchvision.datasets as dset

            import torchvision.transforms as transforms

            cap = dset.CocoCaptions(root = 'dir where images are',

                                    annFile = 'json annotation file',

                                    transform=transforms.PILToTensor())



            print('Number of samples: ', len(cap))

            img, target = cap[3] # load 4th sample



            print("Image Size: ", img.size())

            print(target)



        Output: ::



            Number of samples: 82783

            Image Size: (3L, 427L, 640L)

            [u'A plane emitting smoke stream flying over a mountain.',

            u'A plane darts across a bright blue sky behind a mountain covered in snow',

            u'A plane leaves a contrail above the snowy mountain top.',

            u'A mountain that has a plane flying overheard in the distance.',

            u'A mountain view with a plume of smoke in the background']



    """

    def _load_target(self, id: int) -> List[str]:
        return [ann["caption"] for ann in super()._load_target(id)]


class CocoCaptions_clip_filtered(CocoCaptions):
    positive_prompt=["painting", "drawing", "graffiti",]
    def __init__(

            self,

            root: str ,

            annFile: str,

            transform: Optional[Callable] = None,

            target_transform: Optional[Callable] = None,

            transforms: Optional[Callable] = None,

            regenerate: bool = False,

            id_file: Optional[str] = "/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/data/coco/coco_clip_filtered_ids.pickle"

    ) -> None:
        super().__init__(root, annFile, transform, target_transform, transforms)
        os.makedirs(os.path.dirname(id_file), exist_ok=True)
        if os.path.exists(id_file) and not regenerate:
            with open(id_file, "rb") as f:
                self.ids = pickle.load(f)
        else:
            self.ids, naive_filtered_num = self.naive_filter()
            self.ids, clip_filtered_num = self.clip_filter(0.7)

            print(f"naive Filtered {naive_filtered_num} images")
            print(f"Clip Filtered {clip_filtered_num} images")

            with open(id_file, "wb") as f:
                pickle.dump(self.ids, f)
                print(f"Filtered ids saved to {id_file}")
        print(f"COCO filtered dataset size: {len(self)}")

    def naive_filter(self, filter_prompt="painting"):
        new_ids = []
        naive_filtered_num = 0
        for id in self.ids:
            target = self._load_target(id)
            filtered = False
            for prompt in target:
                if filter_prompt in prompt.lower():
                    filtered = True
                    naive_filtered_num += 1
                    break
                # if "artwork" in prompt.lower():
                #     pass
            if not filtered:
                new_ids.append(id)
        return new_ids, naive_filtered_num

    # def clip_filter(self, threshold=0.7):
    #
    #     def collate_fn(examples):
    #         # {"image": image, "text": [target], "id":id}
    #         pixel_values = [example["image"] for example in examples]
    #         prompts = [example["text"] for example in examples]
    #         id = [example["id"] for example in examples]
    #         return {"images": pixel_values, "prompts": prompts, "ids": id}
    #
    #
    #     clip_filtered_num = 0
    #     clip_filter = Clip_filter(positive_prompt=self.positive_prompt)
    #     clip_logs={"positive_prompt":clip_filter.positive_prompt, "negative_prompt":clip_filter.negative_prompt,
    #                "ids":torch.Tensor([]),"logits":torch.Tensor([])}
    #     clip_log_file = "data/coco/clip_logs.pth"
    #     new_ids = []
    #     batch_size = 128
    #     dataloader = torch.utils.data.DataLoader(self, batch_size=batch_size, num_workers=10, shuffle=False,
    #                                              collate_fn=collate_fn)
    #     for i, batch in enumerate(tqdm(dataloader)):
    #         images = batch["images"]
    #         filter_result, logits = clip_filter.filter(images, threshold=threshold)
    #         ids = torch.IntTensor(batch["ids"])
    #         clip_logs["ids"] = torch.cat([clip_logs["ids"], ids])
    #         clip_logs["logits"] = torch.cat([clip_logs["logits"], logits])
    #
    #         new_ids.extend(ids[~filter_result].tolist())
    #         clip_filtered_num += filter_result.sum().item()
    #         if i % 50 == 0:
    #             torch.save(clip_logs, clip_log_file)
    #     torch.save(clip_logs, clip_log_file)
    #
    #     return new_ids, clip_filtered_num


class CustomCocoCaptions(CocoCaptions):
    def __init__(self, root: str=MyPath.db_root_dir("coco_val"), annFile: str=MyPath.db_root_dir("coco_caption_val"), custom_file:str="/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/jomat-code/filtering/ms_coco_captions_testset100.txt",transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, transforms: Optional[Callable] = None) -> None:

        super().__init__(root, annFile, transform, target_transform, transforms)
        self.column_names = ["image", "text"]
        self.custom_file = custom_file
        self.load_custom_data(custom_file)
        self.transforms = transforms

    def load_custom_data(self, custom_file):
        self.custom_data = []
        with open(custom_file, "r") as f:
            data = f.readlines()
        head = data[0].strip().split(",")
        self.head = head
        for line in data[1:]:
            sub_data = line.strip().split(",")
            if len(sub_data) > len(head):
                sub_data_new = [sub_data[0]]
                sub_data_new+=[",".join(sub_data[1:-1])]
                sub_data_new.append(sub_data[-1])
                sub_data = sub_data_new
            assert len(sub_data) == len(head)
            self.custom_data.append(sub_data)
        # to pd
        self.custom_data = pd.DataFrame(self.custom_data, columns=head)

    def __len__(self) -> int:
        return len(self.custom_data)

    def __getitem__(self, index: int) -> Tuple[Any, Any]:
        data = self.custom_data.iloc[index]
        id = int(data["image_id"])
        ret={"id":id}
        if self.get_img:
            image = self._load_image(id)
            ret["image"] = image
        if self.get_cap:
            caption = data["caption"]
            ret["caption"] = [caption]
        ret["seed"] = int(data["random_seed"])

        if self.transforms is not None:
            ret = self.transforms(ret)

        return ret



def get_validation_set():
    coco_instance = CocoDetection(root="/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/.datasets/coco_2017/train2017/", annFile="/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/.datasets/coco_2017/annotations/instances_train2017.json")
    discard_cat_id = coco_instance.coco.getCatIds(supNms=["person", "animal"])
    discard_img_id = []
    for cat_id in discard_cat_id:
        discard_img_id += coco_instance.coco.catToImgs[cat_id]

    coco_clip_filtered = CocoCaptions_clip_filtered(root=MyPath.db_root_dir("coco_train"), annFile=MyPath.db_root_dir("coco_caption_train"),
                                regenerate=False)
    coco_clip_filtered_ids = coco_clip_filtered.ids
    new_ids = set(coco_clip_filtered_ids) - set(discard_img_id)
    new_ids = list(new_ids)
    new_ids = random.sample(new_ids, 100)
    with open("/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/data/coco/coco_clip_filtered_subset100.pickle", "wb") as f:
        pickle.dump(new_ids, f)

if __name__ == "__main__":
    from mypath import MyPath
    import random
    # get_validation_set()
    # coco_filtered_remian_id = pickle.load(open("data/coco/coco_clip_filtered_ids.pickle", "rb"))
    #
    # coco_filtered_subset100 = random.sample(coco_filtered_remian_id, 100)
    # save_path = "data/coco/coco_clip_filtered_subset100.pickle"
    # with open(save_path, "wb") as f:
    #     pickle.dump(coco_filtered_subset100, f)

    # dataset = CocoCaptions_clip_filtered(root=MyPath.db_root_dir("coco_train"), annFile=MyPath.db_root_dir("coco_caption_train"),
    #                                 regenerate=False)
    dataset = CustomCocoCaptions(root=MyPath.db_root_dir("coco_val"), annFile=MyPath.db_root_dir("coco_caption_val"),
                                 custom_file="/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/jomat-code/filtering/ms_coco_captions_testset100.txt")
    dataset[0]