Spaces:
Build error
Build error
File size: 14,643 Bytes
d323598 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
from __future__ import annotations
import math
import os
import queue
from typing import Optional, Union
import numpy as np
import rerun as rr
import torch
import torchvision
from einops import rearrange, repeat
from omegaconf import ListConfig, OmegaConf
from PIL import Image
from safetensors.torch import load_file as load_safetensors
from torch import autocast
from tqdm import tqdm
from .vwm.modules.diffusionmodules.sampling import EulerEDMSampler
from .vwm.util import default, instantiate_from_config
def init_model(version_dict, load_ckpt=True):
config = OmegaConf.load(version_dict["config"])
model = load_model_from_config(config, version_dict["ckpt"] if load_ckpt else None)
return model
lowvram_mode = True
def set_lowvram_mode(mode):
global lowvram_mode
lowvram_mode = mode
def initial_model_load(model):
global lowvram_mode
if lowvram_mode:
model.model.half()
else:
model.cuda()
return model
def load_model(model):
model.cuda()
def unload_model(model):
global lowvram_mode
print(lowvram_mode)
if lowvram_mode:
model.cpu()
torch.cuda.empty_cache()
torch.cuda.synchronize()
def load_model_from_config(config, ckpt=None):
model = instantiate_from_config(config.model)
print(ckpt)
if ckpt is not None:
print(f"Loading model from {ckpt}")
if ckpt.endswith("ckpt"):
pl_svd = torch.load(ckpt, map_location="cpu")
# dict contains:
# "epoch", "global_step", "pytorch-lightning_version",
# "state_dict", "loops", "callbacks", "optimizer_states", "lr_schedulers"
if "global_step" in pl_svd:
print(f"Global step: {pl_svd['global_step']}")
svd = pl_svd["state_dict"]
else:
svd = load_safetensors(ckpt)
missing, unexpected = model.load_state_dict(svd, strict=False)
if len(missing) > 0:
print(f"Missing keys: {missing}")
if len(unexpected) > 0:
print(f"Unexpected keys: {unexpected}")
model = initial_model_load(model)
model.eval()
return model
def init_embedder_options(keys):
# hardcoded demo settings, might undergo some changes in the future
value_dict = dict()
for key in keys:
if key in ["fps_id", "fps"]:
fps = 10
value_dict["fps"] = fps
value_dict["fps_id"] = fps - 1
elif key == "motion_bucket_id":
value_dict["motion_bucket_id"] = 127 # [0, 511]
return value_dict
def perform_save_locally(save_path, samples, mode, dataset_name, sample_index):
assert mode in ["images", "grids", "videos"]
merged_path = os.path.join(save_path, mode)
os.makedirs(merged_path, exist_ok=True)
samples = samples.cpu()
if mode == "images":
frame_count = 0
for sample in samples:
sample = rearrange(sample.numpy(), "c h w -> h w c")
if "real" in save_path:
sample = 255.0 * (sample + 1.0) / 2.0
else:
sample = 255.0 * sample
image_save_path = os.path.join(
merged_path, f"{dataset_name}_{sample_index:06}_{frame_count:04}.png"
)
# if os.path.exists(image_save_path):
# return
Image.fromarray(sample.astype(np.uint8)).save(image_save_path)
frame_count += 1
elif mode == "grids":
grid = torchvision.utils.make_grid(samples, nrow=int(samples.shape[0] ** 0.5))
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1).numpy()
if "real" in save_path:
grid = 255.0 * (grid + 1.0) / 2.0
else:
grid = 255.0 * grid
grid_save_path = os.path.join(
merged_path, f"{dataset_name}_{sample_index:06}.png"
)
# if os.path.exists(grid_save_path):
# return
Image.fromarray(grid.astype(np.uint8)).save(grid_save_path)
elif mode == "videos":
img_seq = rearrange(samples.numpy(), "t c h w -> t h w c")
if "real" in save_path:
img_seq = 255.0 * (img_seq + 1.0) / 2.0
else:
img_seq = 255.0 * img_seq
video_save_path = os.path.join(
merged_path, f"{dataset_name}_{sample_index:06}.mp4"
)
# if os.path.exists(video_save_path):
# return
save_img_seq_to_video(video_save_path, img_seq.astype(np.uint8), 10)
else:
raise NotImplementedError
def init_sampling(
sampler="EulerEDMSampler",
guider="VanillaCFG",
discretization="EDMDiscretization",
steps=50,
cfg_scale=2.5,
num_frames=25,
):
discretization_config = get_discretization(discretization)
guider_config = get_guider(guider, cfg_scale, num_frames)
sampler = get_sampler(sampler, steps, discretization_config, guider_config)
return sampler
def get_discretization(discretization):
if discretization == "LegacyDDPMDiscretization":
discretization_config = {
"target": "vista.vwm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization"
}
elif discretization == "EDMDiscretization":
discretization_config = {
"target": "vista.vwm.modules.diffusionmodules.discretizer.EDMDiscretization",
"params": {"sigma_min": 0.002, "sigma_max": 700.0, "rho": 7.0},
}
else:
raise NotImplementedError
return discretization_config
def get_guider(guider="LinearPredictionGuider", cfg_scale=2.5, num_frames=25):
if guider == "IdentityGuider":
guider_config = {
"target": "vista.vwm.modules.diffusionmodules.guiders.IdentityGuider"
}
elif guider == "VanillaCFG":
scale = cfg_scale
guider_config = {
"target": "vista.vwm.modules.diffusionmodules.guiders.VanillaCFG",
"params": {"scale": scale},
}
elif guider == "LinearPredictionGuider":
max_scale = cfg_scale
min_scale = 1.0
guider_config = {
"target": "vista.vwm.modules.diffusionmodules.guiders.LinearPredictionGuider",
"params": {
"max_scale": max_scale,
"min_scale": min_scale,
"num_frames": num_frames,
},
}
elif guider == "TrianglePredictionGuider":
max_scale = cfg_scale
min_scale = 1.0
guider_config = {
"target": "vista.vwm.modules.diffusionmodules.guiders.TrianglePredictionGuider",
"params": {
"max_scale": max_scale,
"min_scale": min_scale,
"num_frames": num_frames,
},
}
else:
raise NotImplementedError
return guider_config
def get_sampler(sampler, steps, discretization_config, guider_config):
if sampler == "EulerEDMSampler":
s_churn = 0.0
s_tmin = 0.0
s_tmax = 999.0
s_noise = 1.0
sampler = EulerEDMSampler(
num_steps=steps,
discretization_config=discretization_config,
guider_config=guider_config,
s_churn=s_churn,
s_tmin=s_tmin,
s_tmax=s_tmax,
s_noise=s_noise,
verbose=False,
)
else:
raise ValueError(f"Unknown sampler {sampler}")
return sampler
def get_batch(keys, value_dict, N: Union[list, ListConfig], device="cuda"):
# hardcoded demo setups, might undergo some changes in the future
batch = dict()
batch_uc = dict()
for key in keys:
if key in value_dict:
if key in ["fps", "fps_id", "motion_bucket_id", "cond_aug"]:
batch[key] = repeat(
torch.tensor([value_dict[key]]).to(device), "1 -> b", b=math.prod(N)
)
elif key in ["command", "trajectory", "speed", "angle", "goal"]:
batch[key] = repeat(
value_dict[key][None].to(device), "1 ... -> b ...", b=N[0]
)
elif key in ["cond_frames", "cond_frames_without_noise"]:
batch[key] = repeat(value_dict[key], "1 ... -> b ...", b=N[0])
else:
# batch[key] = value_dict[key]
raise NotImplementedError
for key in batch.keys():
if key not in batch_uc and isinstance(batch[key], torch.Tensor):
batch_uc[key] = torch.clone(batch[key])
return batch, batch_uc
def get_condition(model, value_dict, num_samples, force_uc_zero_embeddings, device):
load_model(model.conditioner)
batch, batch_uc = get_batch(
list(set([x.input_key for x in model.conditioner.embedders])),
value_dict,
[num_samples],
)
c, uc = model.conditioner.get_unconditional_conditioning(
batch, batch_uc=batch_uc, force_uc_zero_embeddings=force_uc_zero_embeddings
)
unload_model(model.conditioner)
for k in c:
if isinstance(c[k], torch.Tensor):
c[k], uc[k] = map(lambda y: y[k][:num_samples].to(device), (c, uc))
if c[k].shape[0] < num_samples:
c[k] = c[k][[0]]
if uc[k].shape[0] < num_samples:
uc[k] = uc[k][[0]]
return c, uc
def fill_latent(cond, length, cond_indices, device):
latent = torch.zeros(length, *cond.shape[1:]).to(device)
latent[cond_indices] = cond
return latent
@torch.no_grad()
def do_sample(
images,
model,
sampler,
value_dict,
num_rounds,
num_frames,
force_uc_zero_embeddings: Optional[list] = None,
initial_cond_indices: Optional[list] = None,
device="cuda",
log_queue: queue.SimpleQueue = None,
):
if initial_cond_indices is None:
initial_cond_indices = [0]
force_uc_zero_embeddings = default(force_uc_zero_embeddings, list())
precision_scope = autocast
with torch.no_grad(), precision_scope(device), model.ema_scope("Sampling"):
c, uc = get_condition(
model, value_dict, num_frames, force_uc_zero_embeddings, device
)
load_model(model.first_stage_model)
z = model.encode_first_stage(images)
unload_model(model.first_stage_model)
samples_z = torch.zeros((num_rounds * (num_frames - 3) + 3, *z.shape[1:])).to(
device
)
sampling_progress = tqdm(total=num_rounds, desc="Compute sequences")
def denoiser(x, sigma, cond, cond_mask):
return model.denoiser(model.model, x, sigma, cond, cond_mask)
load_model(model.denoiser)
load_model(model.model)
initial_cond_mask = torch.zeros(num_frames).to(device)
prediction_cond_mask = torch.zeros(num_frames).to(device)
initial_cond_mask[initial_cond_indices] = 1
prediction_cond_mask[[0, 1, 2]] = 1
generated_images = []
noise = torch.randn_like(z)
sample = sampler(
denoiser,
noise,
cond=c,
uc=uc,
cond_frame=z, # cond_frame will be rescaled when calling the sampler
cond_mask=initial_cond_mask,
num_sequence=0,
log_queue=log_queue,
)
sampling_progress.update(1)
sample[0] = z[0]
samples_z[:num_frames] = sample
generated_images.append(decode_samples(sample[:num_frames], model))
for i, generated_image in enumerate(generated_images[-1]):
log_queue.put(
(
"generated_image",
rr.Image(generated_image.cpu().permute(1, 2, 0)),
[
("frame_id", i),
("diffusion", 0),
(
"combined",
1 + 2 * 0 + (i * 1.0 / len(generated_images[-1])),
),
],
)
)
for n in range(num_rounds - 1):
load_model(model.first_stage_model)
samples_x_for_guidance = model.decode_first_stage(sample[-14:])
unload_model(model.first_stage_model)
value_dict["cond_frames_without_noise"] = samples_x_for_guidance[[-3]]
value_dict["cond_frames"] = sample[[-3]] / model.scale_factor
for embedder in model.conditioner.embedders:
if hasattr(embedder, "skip_encode"):
embedder.skip_encode = True
c, uc = get_condition(
model, value_dict, num_frames, force_uc_zero_embeddings, device
)
for embedder in model.conditioner.embedders:
if hasattr(embedder, "skip_encode"):
embedder.skip_encode = False
filled_latent = fill_latent(sample[-3:], num_frames, [0, 1, 2], device)
noise = torch.randn_like(filled_latent)
sample = sampler(
denoiser,
noise,
cond=c,
uc=uc,
cond_frame=filled_latent, # cond_frame will be rescaled when calling the sampler
cond_mask=prediction_cond_mask,
num_sequence=n + 1,
log_queue=log_queue,
)
sampling_progress.update(1)
first_frame_id = (n + 1) * (num_frames - 3) + 3
last_frame_id = (n + 1) * (num_frames - 3) + num_frames
samples_z[first_frame_id:last_frame_id] = sample[3:]
generated_images.append(decode_samples(sample[3:], model))
for i, generated_image in enumerate(generated_images[-1]):
log_queue.put(
(
"generated_image",
rr.Image(generated_image.cpu().permute(1, 2, 0)),
[
("frame_id", first_frame_id + i),
("diffusion", 0),
(
"combined",
1 + 2 * (n + 1) + (i * 1.0 / len(generated_images[-1])),
),
],
)
)
unload_model(model.model)
unload_model(model.denoiser)
generated_images = torch.concat(generated_images, dim=0)
return generated_images, samples_z, images
def decode_samples(samples, model):
load_model(model.first_stage_model)
samples_x = model.decode_first_stage(samples)
unload_model(model.first_stage_model)
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
return samples
|