derek-thomas HF staff commited on
Commit
6621d73
·
1 Parent(s): d0819c0

Adding filter for ids

Browse files
Files changed (1) hide show
  1. src/utilities.py +28 -0
src/utilities.py CHANGED
@@ -2,6 +2,7 @@ import os
2
 
3
  import numpy as np
4
  import pandas as pd
 
5
  from datasets import Dataset, DownloadMode, load_dataset
6
  from gradio_client import Client
7
 
@@ -12,6 +13,7 @@ USERNAME = os.environ["USERNAME"]
12
  OG_DATASET = f"{USERNAME}/dataset-creator-reddit-{SUBREDDIT}"
13
  PROCESSED_DATASET = os.environ['PROCESSED_DATASET']
14
  embeddings_space = f"{USERNAME}/nomic-embeddings"
 
15
 
16
  logger = setup_logger(__name__)
17
 
@@ -36,6 +38,9 @@ def merge_and_update_datasets(dataset, original_dataset):
36
  odf = original_dataset['train'].to_pandas()
37
  df = dataset['train'].to_pandas()
38
 
 
 
 
39
  # Step 1: Merge df onto odf
40
  # We'll bring in 'content' and 'embedding' from df to compare and possibly update 'embedding'
41
  merged_df = pd.merge(odf, df[['id', 'content', 'embedding']], on='id', how='left', suffixes=('_odf', ''))
@@ -60,6 +65,29 @@ def merge_and_update_datasets(dataset, original_dataset):
60
  return dataset, updated_row_count
61
 
62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  def update_embeddings(content, client):
64
  embedding = client.predict('search_document: ' + content, api_name="/embed")
65
  return np.array(embedding)
 
2
 
3
  import numpy as np
4
  import pandas as pd
5
+ import requests
6
  from datasets import Dataset, DownloadMode, load_dataset
7
  from gradio_client import Client
8
 
 
13
  OG_DATASET = f"{USERNAME}/dataset-creator-reddit-{SUBREDDIT}"
14
  PROCESSED_DATASET = os.environ['PROCESSED_DATASET']
15
  embeddings_space = f"{USERNAME}/nomic-embeddings"
16
+ FILTER_IDS_URL = "https://huggingface.co/spaces/reddit-tools-HF/dataset-creator-reddit-bestofredditorupdates/raw/main/filter_ids.json"
17
 
18
  logger = setup_logger(__name__)
19
 
 
38
  odf = original_dataset['train'].to_pandas()
39
  df = dataset['train'].to_pandas()
40
 
41
+ # Filter ODF in-case we missed any
42
+ odf = remove_filtered_rows(odf, FILTER_IDS_URL)
43
+
44
  # Step 1: Merge df onto odf
45
  # We'll bring in 'content' and 'embedding' from df to compare and possibly update 'embedding'
46
  merged_df = pd.merge(odf, df[['id', 'content', 'embedding']], on='id', how='left', suffixes=('_odf', ''))
 
65
  return dataset, updated_row_count
66
 
67
 
68
+ def remove_filtered_rows(df: pd.DataFrame, url: str) -> pd.DataFrame:
69
+ """
70
+ Removes rows from the DataFrame where the 'id' is present in the JSON file at the given URL.
71
+
72
+ :param df: Input DataFrame to be filtered.
73
+ :param url: URL to the JSON file containing the filter IDs.
74
+ :return: DataFrame with rows containing IDs present in the JSON file removed.
75
+ """
76
+
77
+ # Load filter IDs from JSON file at the URL
78
+ response = requests.get(url)
79
+ filter_ids = response.json()
80
+
81
+ logger.info(f"Loaded {len(filter_ids)} IDs from {url}")
82
+
83
+ # Remove the rows with IDs present in filter_ids
84
+ filtered_df = df[~df['id'].astype(str).isin(filter_ids)]
85
+
86
+ logger.info(f"Filtered {len(df) - len(filtered_df)} rows from the DataFrame")
87
+
88
+ return filtered_df
89
+
90
+
91
  def update_embeddings(content, client):
92
  embedding = client.predict('search_document: ' + content, api_name="/embed")
93
  return np.array(embedding)