neobot commited on
Commit
05b3af6
·
1 Parent(s): 7b64c83

working version of app

Browse files
Files changed (1) hide show
  1. app.py +7 -18
app.py CHANGED
@@ -7,40 +7,29 @@ OPENAI_API_KEY = st.secrets["OPENAI_API_KEY"]
7
  INDEX_NAME = 'realvest-data-v2'
8
  EMBEDDING_MODEL = "text-embedding-ada-002" # OpenAI's best embeddings as of Apr 2023
9
 
10
- ### Pinecone
11
-
12
  # initialize connection to pinecone (get API key at app.pinecone.io)
13
  pinecone.init(
14
  api_key=PINECONE_API_KEY,
15
  environment="us-central1-gcp" # may be different, check at app.pinecone.io
16
  )
17
-
18
  index = pinecone.Index(INDEX_NAME)
 
 
19
 
20
  ### Main
21
-
22
  # Create a text input field
23
  query = st.text_input("What are you looking for?")
24
 
25
  # Create a button
26
  if st.button('Submit'):
27
- # Display a response when the button is pressed
28
- # st.text("Hi, {}".format(query))
29
- print('click Submit')
30
 
31
- ### text-embedding
32
  res = openai.Embedding.create(model=EMBEDDING_MODEL, input=[query], api_key=OPENAI_API_KEY)
33
- st.json(res)
34
  xq = res['data'][0]['embedding']
35
-
36
- ### query VectorDB
37
  out = index.query(xq, top_k=3, include_metadata=True)
38
 
39
  ### display
40
- st.write(out)
41
-
42
- # st.write(stats)
43
-
44
- # from tqdm.autonotebook import tqdm
45
-
46
-
 
7
  INDEX_NAME = 'realvest-data-v2'
8
  EMBEDDING_MODEL = "text-embedding-ada-002" # OpenAI's best embeddings as of Apr 2023
9
 
 
 
10
  # initialize connection to pinecone (get API key at app.pinecone.io)
11
  pinecone.init(
12
  api_key=PINECONE_API_KEY,
13
  environment="us-central1-gcp" # may be different, check at app.pinecone.io
14
  )
 
15
  index = pinecone.Index(INDEX_NAME)
16
+ stats = index.describe_index_stats()
17
+ print(f"Pinecone DB stats: {stats}")
18
 
19
  ### Main
 
20
  # Create a text input field
21
  query = st.text_input("What are you looking for?")
22
 
23
  # Create a button
24
  if st.button('Submit'):
 
 
 
25
 
26
+ # ### call OpenAI text-embedding
27
  res = openai.Embedding.create(model=EMBEDDING_MODEL, input=[query], api_key=OPENAI_API_KEY)
 
28
  xq = res['data'][0]['embedding']
 
 
29
  out = index.query(xq, top_k=3, include_metadata=True)
30
 
31
  ### display
32
+ print(f"{'*'*30}results #3: {out}")
33
+ st.write("Matched results")
34
+ for match in out['matches']:
35
+ st.write( match['id'] )