Spaces:
Running
Running
import streamlit as st | |
import openai | |
import pinecone | |
PINECONE_API_KEY = st.secrets["PINECONE_API_KEY"] | |
OPENAI_API_KEY = st.secrets["OPENAI_API_KEY"] | |
INDEX_NAME = 'realvest-data-v2' | |
EMBEDDING_MODEL = "text-embedding-ada-002" # OpenAI's best embeddings as of Apr 2023 | |
### Pinecone | |
# initialize connection to pinecone (get API key at app.pinecone.io) | |
pinecone.init( | |
api_key=PINECONE_API_KEY, | |
environment="us-central1-gcp" # may be different, check at app.pinecone.io | |
) | |
index = pinecone.Index(INDEX_NAME) | |
### Main | |
# Create a text input field | |
query = st.text_input("What are you looking for?") | |
# Create a button | |
if st.button('Submit'): | |
# Display a response when the button is pressed | |
# st.text("Hi, {}".format(query)) | |
print('click Submit') | |
### text-embedding | |
res = openai.Embedding.create(model=EMBEDDING_MODEL, input=[query], api_key=OPENAI_API_KEY) | |
st.json(res) | |
xq = res['data'][0]['embedding'] | |
### query VectorDB | |
out = index.query(xq, top_k=3, include_metadata=True) | |
### display | |
st.json(out) | |
# st.write(stats) | |
# from tqdm.autonotebook import tqdm | |