reach-vb's picture
reach-vb HF staff
Update app.py (#28)
4cd057e verified
import os
import tempfile
os.environ["HF_HUB_CACHE"] = "cache"
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
import gradio as gr
from huggingface_hub import HfApi
from huggingface_hub import whoami
from huggingface_hub import ModelCard
from huggingface_hub import scan_cache_dir
from huggingface_hub import logging
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from apscheduler.schedulers.background import BackgroundScheduler
from textwrap import dedent
import mlx_lm
from mlx_lm import convert
HF_TOKEN = os.environ.get("HF_TOKEN")
# I'm not sure if we need to add more stuff here
QUANT_PARAMS = {
"Q4": 4,
"Q8": 8,
}
def list_files_in_folder(folder_path):
# List all files and directories in the specified folder
all_items = os.listdir(folder_path)
# Filter out only files
files = [item for item in all_items if os.path.isfile(os.path.join(folder_path, item))]
return files
def clear_hf_cache_space():
scan = scan_cache_dir()
to_delete = []
for repo in scan.repos:
if repo.repo_type == "model":
to_delete.extend([rev.commit_hash for rev in repo.revisions])
scan.delete_revisions(*to_delete).execute()
print("Cache has been cleared")
def upload_to_hub(path, upload_repo, hf_path, oauth_token):
card = ModelCard.load(hf_path, token=oauth_token.token)
card.data.tags = ["mlx"] if card.data.tags is None else card.data.tags + ["mlx"]
card.data.base_model = hf_path
card.text = dedent(
f"""
# {upload_repo}
The Model [{upload_repo}](https://huggingface.co/{upload_repo}) was converted to MLX format from [{hf_path}](https://huggingface.co/{hf_path}) using mlx-lm version **{mlx_lm.__version__}**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("{upload_repo}")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{{"role": "user", "content": prompt}}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
"""
)
card.save(os.path.join(path, "README.md"))
logging.set_verbosity_info()
api = HfApi(token=oauth_token.token)
api.create_repo(repo_id=upload_repo, exist_ok=True)
files = list_files_in_folder(path)
print(files)
for file in files:
file_path = os.path.join(path, file)
print(f"Uploading file: {file_path}")
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=file,
repo_id=upload_repo,
)
print(f"Upload successful, go to https://huggingface.co/{upload_repo} for details.")
def process_model(model_id, q_method, oauth_token: gr.OAuthToken | None):
if oauth_token.token is None:
raise ValueError("You must be logged in to use MLX-my-repo")
model_name = model_id.split('/')[-1]
username = whoami(oauth_token.token)["name"]
try:
upload_repo = f"{username}/{model_name}-{q_method}-mlx"
print(upload_repo)
with tempfile.TemporaryDirectory(dir="converted") as tmpdir:
# The target dir must not exist
mlx_path = os.path.join(tmpdir, "mlx")
convert(model_id, mlx_path=mlx_path, quantize=True, q_bits=QUANT_PARAMS[q_method])
print("Conversion done")
upload_to_hub(path=mlx_path, upload_repo=upload_repo, hf_path=model_id, oauth_token=oauth_token)
print("Upload done")
return (
f'Find your repo <a href="https://hf.co/{upload_repo}" target="_blank" style="text-decoration:underline">here</a>',
"llama.png",
)
except Exception as e:
return (f"Error: {e}", "error.png")
finally:
clear_hf_cache_space()
print("Folder cleaned up successfully!")
css="""/* Custom CSS to allow scrolling */
.gradio-container {overflow-y: auto;}
"""
# Create Gradio interface
with gr.Blocks(css=css) as demo:
gr.Markdown("You must be logged in to use MLX-my-repo.")
gr.LoginButton(min_width=250)
model_id = HuggingfaceHubSearch(
label="Hub Model ID",
placeholder="Search for model id on Huggingface",
search_type="model",
)
q_method = gr.Dropdown(
["Q4", "Q8"],
label="Quantization Method",
info="MLX quantization type",
value="Q4",
filterable=False,
visible=True
)
iface = gr.Interface(
fn=process_model,
inputs=[
model_id,
q_method,
],
outputs=[
gr.Markdown(label="output"),
gr.Image(show_label=False),
],
title="Create your own MLX Quants, blazingly fast ⚡!",
description="The space takes an HF repo as an input, quantizes it and creates a Public/ Private repo containing the selected quant under your HF user namespace.",
api_name=False
)
def restart_space():
HfApi().restart_space(repo_id="reach-vb/mlx-my-repo", token=HF_TOKEN, factory_reboot=True)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=21600)
scheduler.start()
# Launch the interface
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)