Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import LlavaOnevisionProcessor, LlavaOnevisionForConditionalGeneration, TextIteratorStreamer | |
from threading import Thread | |
import re | |
import time | |
from PIL import Image | |
import torch | |
import cv2 | |
import spaces | |
model_id = "llava-hf/llava-onevision-qwen2-0.5b-ov-hf" | |
processor = LlavaOnevisionProcessor.from_pretrained(model_id) | |
model = LlavaOnevisionForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.float16) | |
model.to("cuda") | |
def sample_frames(video_file, num_frames): | |
video = cv2.VideoCapture(video_file) | |
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) | |
interval = total_frames // num_frames | |
frames = [] | |
for i in range(total_frames): | |
ret, frame = video.read() | |
pil_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
if not ret: | |
continue | |
if i % interval == 0: | |
frames.append(pil_img) | |
video.release() | |
return frames | |
def bot_streaming(message, history): | |
txt = message["text"] | |
ext_buffer = f"USER: {txt} ASSISTANT: " | |
if message["files"]: | |
if len(message["files"]) == 1: | |
image = [message.files[0].path] | |
# interleaved images or video | |
elif len(message["files"]) > 1: | |
image = [msg["path"] for msg in message["files"]] | |
else: | |
def has_file_data(lst): | |
return any(isinstance(item, FileData) for sublist in lst if isinstance(sublist, tuple) for item in sublist) | |
def extract_paths(lst): | |
return [item["path"] for sublist in lst if isinstance(sublist, tuple) for item in sublist if isinstance(item, FileData)] | |
latest_text_only_index = -1 | |
for i, item in enumerate(history): | |
if all(isinstance(sub_item, str) for sub_item in item): | |
latest_text_only_index = i | |
image = [path for i, item in enumerate(history) if i < latest_text_only_index and has_file_data(item) for path in extract_paths(item)] | |
if message["files"] is None: | |
gr.Error("You need to upload an image or video for LLaVA to work.") | |
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg") | |
image_extensions = Image.registered_extensions() | |
image_extensions = tuple([ex for ex, f in image_extensions.items()]) | |
image_list = [] | |
video_list = [] | |
print("media", image) | |
if len(image) == 1: | |
if image[0].endswith(video_extensions): | |
video_list = sample_frames(image[0], 12) | |
prompt = f"USER: <video> {message.text} ASSISTANT:" | |
elif image[0].endswith(image_extensions): | |
image_list.append(Image.open(image[0]).convert("RGB")) | |
msg = message["text"] | |
prompt = f"USER: <image> {message.text} ASSISTANT:" | |
elif len(image) > 1: | |
user_prompt = message["text"] | |
for img in image: | |
if img.endswith(image_extensions): | |
img = Image.open(img).convert("RGB") | |
image_list.append(img) | |
elif img.endswith(video_extensions): | |
video_list.append(sample_frames(img, 7)) | |
#for frame in sample_frames(img, 6): | |
#video_list.append(frame) | |
image_tokens = "" | |
video_tokens = "" | |
if image_list != []: | |
image_tokens = "<image>" * len(image_list) | |
if video_list != []: | |
toks = len(video_list) | |
video_tokens = "<video>" * toks | |
prompt = f"USER: {image_tokens}{video_tokens} {user_prompt} ASSISTANT:" | |
if image_list != [] and video_list != []: | |
inputs = processor(text=prompt, images=image_list, videos=video_list, padding=True, return_tensors="pt").to("cuda",torch.float16) | |
elif image_list != [] and video_list == []: | |
inputs = processor(text=prompt, images=image_list, padding=True, return_tensors="pt").to("cuda", torch.float16) | |
elif image_list == [] and video_list != []: | |
inputs = processor(text=prompt, videos=video_list, padding=True, return_tensors="pt").to("cuda", torch.float16) | |
streamer = TextIteratorStreamer(processor, **{"max_new_tokens": 200, "skip_special_tokens": True, "clean_up_tokenization_spaces":True}) | |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=200) | |
generated_text = "" | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
print("new_text", new_text) | |
#generated_text_without_prompt = buffer[len(ext_buffer):][:-1] | |
time.sleep(0.01) | |
yield buffer #generated_text_without_prompt | |
demo = gr.ChatInterface(fn=bot_streaming, title="LLaVA Onevision", examples=[ | |
{"text": "Do the cats in these two videos have same breed? What breed is each cat?", "files":["./cats_1.mp4", "./cats_2.mp4"]}, | |
{"text": "These are the tech specs of two laptops I am choosing from. Which one should I choose for office work?", "files":["./dell-tech-specs.jpeg", "./asus-tech-specs.png"]}, | |
{"text": "Here are several images from a cooking book, showing how to prepare a meal step by step. Can you write a recipe for the meal, describing each step in details?", "files":["./step0.png", "./step1.png", "./step2.png", "./step3.png", "./step4.png", "./step5.png"]}, | |
{"text": "What is on the flower?", "files":["./bee.jpg"]}, | |
{"text": "This is a video explaining how to create a Presentation in GoogleSlides. Can you write down what I should do step by step, following the video?", "files":["./tutorial.mp4"]}], | |
textbox=gr.MultimodalTextbox(file_count="multiple"), | |
description="Try [LLaVA Onevision](https://huggingface.co/docs/transformers/main/en/model_doc/llava_onevision) in this demo (more specifically, the [Qwen-2-0.5B-Instruct variant](https://huggingface.co/llava-hf/llava-onevision-qwen2-0.5b-ov-hf)). Upload an image or a video, and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error. ", | |
stop_btn="Stop Generation", multimodal=True) | |
demo.launch(debug=True) |