Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,242 Bytes
647bfef 897a949 647bfef 897a949 647bfef a61fc84 8fd1be3 cf28fff 647bfef 5ecabd0 647bfef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
import os
from PIL import Image, ImageOps
import random
import spaces
import cv2
from diffusers import StableVideoDiffusionPipeline
from diffusers.image_processor import VaeImageProcessor
from diffusers.models.attention_processor import XFormersAttnProcessor
from diffusers.utils import export_to_gif
import gradio as gr
import numpy as np
from safetensors import safe_open
from segment_anything import build_sam, SamPredictor
from tqdm import tqdm
import torch
from svd import (
UNetDragSpatioTemporalConditionModel,
AllToFirstXFormersAttnProcessor,
)
TITLE = '''Puppet-Master: Scaling Interactive Video Generation as a Motion Prior for Part-Level Dynamics'''
DESCRIPTION = """
<div>
Try <a href='https://vgg-puppetmaster.github.io/'><b>Puppet-Master</b></a> yourself to animate your favorite objects in seconds!
</div>
<div>
Please give us a π on <a href='https://github.com/RuiningLi/puppet-master'>Github</a> if you like our work!
</div>
"""
INSTRUCTION = '''
2 steps to get started:
- Upload an image of a dynamic object.
- Add one or more drags on the object to specify the part-level interactions.
How to add drags:
- To add a drag, first click on the starting point of the drag, then click on the ending point of the drag, on the Input Image (leftmost).
- You can add up to 5 drags.
- After every click, the drags will be visualized on the Image with Drags (second from left).
- If the last drag is not completed (you specified the starting point but not the ending point), it will simply be ignored.
- To retry, click the [x] button on the top-right corner of the input image to start over, even if you just want to try a different set of drags.
- Have fun dragging!
Then, you will be prompted to verify the object segmentation. Once you confirm that the segmentation is decent, the output image will be generated in seconds!
Tips:
- We found having classifier-free guidance weight ~5.0 works best.
- Try changing the random seed to get different results.
'''
PREPROCESS_INSTRUCTION = '''
Segmentation is needed if it is not already provided through an alpha channel in the input image.
You don't need to tick this box if you have chosen one of the example images.
If you have uploaded one of your own images, it is very likely that you will need to tick this box.
You should verify that the preprocessed image is object-centric (i.e., clearly contains a single object) and has white background.
'''
def tensor2vid(video: torch.Tensor, processor: VaeImageProcessor, output_type: str = "np"):
batch_size = video.shape[0]
outputs = []
for batch_idx in range(batch_size):
batch_vid = video[batch_idx].permute(1, 0, 2, 3)
batch_output = processor.postprocess(batch_vid, output_type)
outputs.append(batch_output)
if output_type == "np":
outputs = np.stack(outputs)
elif output_type == "pt":
outputs = torch.stack(outputs)
elif not output_type == "pil":
raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil']")
return outputs
def center_and_square_image(pil_image_rgba, drags, scale_factor):
image = pil_image_rgba
alpha = np.array(image)[:, :, 3] # Extract the alpha channel
foreground_coords = np.argwhere(alpha > 0)
y_min, x_min = foreground_coords.min(axis=0)
y_max, x_max = foreground_coords.max(axis=0)
cy, cx = (y_min + y_max) // 2, (x_min + x_max) // 2
crop_height, crop_width = y_max - y_min + 1, x_max - x_min + 1
side_length = int(max(crop_height, crop_width) * scale_factor)
padded_image = ImageOps.expand(
image,
(side_length // 2, side_length // 2, side_length // 2, side_length // 2),
fill=(255, 255, 255, 255)
)
left, top = cx, cy
new_drags = []
for d in drags:
x, y = d
new_x, new_y = (x + side_length // 2 - cx) / side_length, (y + side_length // 2 - cy) / side_length
new_drags.append((new_x, new_y))
# Crop or pad the image as needed to make it centered around (cx, cy)
image = padded_image.crop((left, top, left + side_length, top + side_length))
# Resize the image to 256x256
image = image.resize((256, 256), Image.Resampling.LANCZOS)
return image, new_drags
def sam_init():
sam_checkpoint = os.path.join(os.path.dirname(__file__), "ckpts", "sam_vit_h_4b8939.pth")
predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint).to("cuda"))
return predictor
def model_init():
model_checkpoint = os.path.join(os.path.dirname(__file__), "ckpts", "model.safetensors")
state_dict = {}
with safe_open(model_checkpoint, framework="pt", device="cpu") as f:
for k in f.keys():
state_dict[k] = f.get_tensor(k)
model = UNetDragSpatioTemporalConditionModel(num_drags=5)
attn_processors_dict={
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"down_blocks.0.attentions.0.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
"down_blocks.0.attentions.0.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"down_blocks.0.attentions.1.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
"down_blocks.0.attentions.1.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"down_blocks.1.attentions.0.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
"down_blocks.1.attentions.0.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"down_blocks.1.attentions.1.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
"down_blocks.1.attentions.1.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"down_blocks.2.attentions.0.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
"down_blocks.2.attentions.0.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"down_blocks.2.attentions.1.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
"down_blocks.2.attentions.1.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"up_blocks.1.attentions.0.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
"up_blocks.1.attentions.0.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"up_blocks.1.attentions.1.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
"up_blocks.1.attentions.1.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"up_blocks.1.attentions.2.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
"up_blocks.1.attentions.2.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"up_blocks.2.attentions.0.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
"up_blocks.2.attentions.0.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"up_blocks.2.attentions.1.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
"up_blocks.2.attentions.1.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"up_blocks.2.attentions.2.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
"up_blocks.2.attentions.2.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"up_blocks.3.attentions.0.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
"up_blocks.3.attentions.0.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"up_blocks.3.attentions.1.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
"up_blocks.3.attentions.1.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"up_blocks.3.attentions.2.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
"up_blocks.3.attentions.2.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"up_blocks.1.attentions.0.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
"up_blocks.1.attentions.0.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"up_blocks.1.attentions.1.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
"up_blocks.1.attentions.1.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"up_blocks.1.attentions.2.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
"up_blocks.1.attentions.2.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"up_blocks.2.attentions.0.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
"up_blocks.2.attentions.0.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"up_blocks.2.attentions.1.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
"up_blocks.2.attentions.1.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"up_blocks.2.attentions.2.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
"up_blocks.2.attentions.2.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"up_blocks.3.attentions.0.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
"up_blocks.3.attentions.0.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"up_blocks.3.attentions.1.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
"up_blocks.3.attentions.1.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"up_blocks.3.attentions.2.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
"up_blocks.3.attentions.2.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"mid_block.attentions.0.transformer_blocks.0.attn1.processor": AllToFirstXFormersAttnProcessor(),
"mid_block.attentions.0.transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
"mid_block.attentions.0.temporal_transformer_blocks.0.attn1.processor": XFormersAttnProcessor(),
"mid_block.attentions.0.temporal_transformer_blocks.0.attn2.processor": XFormersAttnProcessor(),
}
model.set_attn_processor(attn_processors_dict)
model.load_state_dict(state_dict, strict=True)
return model.to("cuda")
sam_predictor = sam_init()
model = model_init()
pipe = StableVideoDiffusionPipeline.from_pretrained(
"stabilityai/stable-video-diffusion-img2vid",
torch_dtype=torch.float16, variant="fp16", map_location="cpu"
)
pipe = pipe.to("cuda")
@spaces.GPU(duration=10)
def sam_segment(input_image, drags, foreground_points=None, scale_factor=2.2):
image = np.asarray(input_image)
sam_predictor.set_image(image)
with torch.no_grad():
masks_bbox, _, _ = sam_predictor.predict(
point_coords=foreground_points if foreground_points is not None else None,
point_labels=np.ones(len(foreground_points)) if foreground_points is not None else None,
multimask_output=True
)
out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
out_image[:, :, :3] = image
out_image[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255
torch.cuda.empty_cache()
out_image, new_drags = center_and_square_image(Image.fromarray(out_image, mode="RGBA"), drags, scale_factor)
return out_image, new_drags
def get_point(img, sel_pix, evt: gr.SelectData):
sel_pix.append(evt.index)
points = []
img = np.array(img)
height = img.shape[0]
arrow_width_large = 7 * height // 256
arrow_width_small = 3 * height // 256
circle_size = 5 * height // 256
with_alpha = img.shape[2] == 4
for idx, point in enumerate(sel_pix):
if idx % 2 == 1:
cv2.circle(img, tuple(point), circle_size, (0, 0, 255, 255) if with_alpha else (0, 0, 255), -1)
else:
cv2.circle(img, tuple(point), circle_size, (255, 0, 0, 255) if with_alpha else (255, 0, 0), -1)
points.append(tuple(point))
if len(points) == 2:
cv2.arrowedLine(img, points[0], points[1], (0, 0, 0, 255) if with_alpha else (0, 0, 0), arrow_width_large)
cv2.arrowedLine(img, points[0], points[1], (255, 255, 0, 255) if with_alpha else (0, 0, 0), arrow_width_small)
points = []
return img if isinstance(img, np.ndarray) else np.array(img)
def clear_drag():
return []
def preprocess_image(img, chk_group, drags):
if img is None:
gr.Warning("No image is specified. Please specify an image before preprocessing.")
return None, drags
if drags is None or len(drags) == 0:
foreground_points = None
else:
foreground_points = np.array([drags[i] for i in range(0, len(drags), 2)])
if len(drags) == 0:
gr.Warning("No drags are specified. We recommend first specifying the drags before preprocessing.")
new_drags = drags
if "Preprocess with Segmentation" in chk_group:
img_np = np.array(img)
rgb_img = img_np[..., :3]
img, new_drags = sam_segment(
rgb_img,
drags,
foreground_points=foreground_points,
)
else:
new_drags = [(d[0] / img.width, d[1] / img.height) for d in drags]
img = np.array(img).astype(np.float32)
processed_img = img[..., :3] * img[..., 3:] / 255. + 255. * (1 - img[..., 3:] / 255.)
image_pil = Image.fromarray(processed_img.astype(np.uint8), mode="RGB")
processed_img = image_pil.resize((256, 256), Image.LANCZOS)
return processed_img, new_drags
def sample_from_noise(model, scheduler, cond_latent, cond_embedding, drags,
min_guidance=1.0, max_guidance=3.0, num_inference_steps=50):
model.eval()
scheduler.set_timesteps(num_inference_steps, device=cond_latent.device)
timesteps = scheduler.timesteps.to(cond_latent.device)
do_classifier_free_guidance = max_guidance > 1.0
latents = torch.randn((1, 14, 4, 32, 32)).to(cond_latent) * scheduler.init_noise_sigma
guidance_scale = torch.linspace(min_guidance, max_guidance, 14).unsqueeze(0).to(cond_latent)[..., None, None, None]
for i, t in tqdm(enumerate(timesteps)):
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
with torch.no_grad():
noise_pred = model(
latent_model_input,
t,
image_latents=torch.cat([cond_latent, torch.zeros_like(cond_latent)]) if do_classifier_free_guidance else cond_latent,
encoder_hidden_states=torch.cat([cond_embedding, torch.zeros_like(cond_embedding)]) if do_classifier_free_guidance else cond_embedding,
added_time_ids=None, # dummy
drags=torch.cat([drags, torch.zeros_like(drags)]) if do_classifier_free_guidance else drags,
)
if do_classifier_free_guidance:
noise_pred_cond, noise_pred_uncond = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
latents = scheduler.step(noise_pred, t, latents).prev_sample
return latents
@spaces.GPU(duration=100)
def generate_image(img_cond, seed, cfg_scale, drags_list):
if img_cond is None:
gr.Warning("Please preprocess the image first.")
return None
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
img_cond_pil = Image.fromarray(img_cond)
img_cond_preprocessed = pipe.video_processor.preprocess(img_cond_pil, height=256, width=256)
img_cond_preprocessed = img_cond_preprocessed.to(device="cuda", dtype=torch.float16)
latent_dist = pipe.vae.encode(img_cond_preprocessed).latent_dist
embeddings = pipe._encode_image(img_cond_pil, device="cuda", num_videos_per_prompt=1, do_classifier_free_guidance=False)
drags = torch.zeros(14, 5, 4)
for i in range(0, len(drags_list), 2):
start_point, end_point = drags_list[i:i+2]
drag_idx = i // 2
drags[:, drag_idx, :2] = torch.Tensor(start_point)
drags[0, drag_idx, 2:] = torch.Tensor(start_point)
drags[-1, drag_idx, 2:] = torch.Tensor(end_point)
if drag_idx == 4:
break
frame_indices = torch.arange(1, 13).unsqueeze(-1).unsqueeze(-1)
t = frame_indices.float() / 13.0 # Normalize time to [0, 1]
drags[1:-1, :, 2:] = drags[0, :, 2:] * (1 - t) + drags[-1, :, 2:] * t
drags = drags[None].to(device="cuda")
batch = dict(
drags=drags,
cond_embedding=embeddings.to(dtype=torch.float32),
cond_latent=latent_dist.mean.to(dtype=torch.float32),
)
with torch.no_grad():
latents = sample_from_noise(
model,
pipe.scheduler,
**batch,
max_guidance=cfg_scale,
num_inference_steps=50,
)
frames = pipe.vae.decode(latents.flatten(0, 1).to(torch.float16) / 0.18215, num_frames=14).sample.float()
frames = tensor2vid(frames.view(-1, 14, 3, 256, 256).permute(0, 2, 1, 3, 4), pipe.video_processor, output_type="pil")[0]
# Add drags
frame_with_drag = np.ascontiguousarray(np.array(frames[0]))
for i in range(0, len(drags_list), 2):
drag_idx = i // 2
start_point, end_point = drags_list[i:i+2]
start_point = (int(start_point[0] * 256), int(start_point[1] * 256))
end_point = (int(end_point[0] * 256), int(end_point[1] * 256))
frame_with_drag = cv2.arrowedLine(frame_with_drag, start_point, end_point, (0, 0, 0), 4)
frame_with_drag = cv2.arrowedLine(frame_with_drag, start_point, end_point, (255, 255, 0), 2)
if drag_idx == 4:
break
frames = [Image.fromarray(frame_with_drag)] * 5 + frames
save_dir = os.path.join(os.path.dirname(__file__), "outputs")
if not os.path.exists(save_dir):
os.makedirs(save_dir)
save_id = len(os.listdir(save_dir))
save_path = os.path.join(save_dir, f"{save_id:05d}.gif")
export_to_gif(frames, save_path)
return save_path
with gr.Blocks(title=TITLE) as demo:
gr.Markdown("# " + DESCRIPTION)
with gr.Row():
gr.Markdown(INSTRUCTION)
drags = gr.State(value=[])
with gr.Row(variant="panel"):
with gr.Column(scale=1):
input_image = gr.Image(
interactive=True,
type='pil',
image_mode="RGBA",
width=256,
show_label=True,
label="Input Image",
)
example_folder = os.path.join(os.path.dirname(__file__), "./example_images")
example_fns = [os.path.join(example_folder, example) for example in sorted(os.listdir(example_folder))]
gr.Examples(
examples=example_fns,
inputs=[input_image],
cache_examples=False,
label='Feel free to use one of our provided examples!',
examples_per_page=30
)
input_image.change(
fn=clear_drag,
outputs=[drags],
)
with gr.Column(scale=1):
drag_image = gr.Image(
type="numpy",
label="Image with Drags",
interactive=False,
width=256,
image_mode="RGB",
)
input_image.select(
fn=get_point,
inputs=[input_image, drags],
outputs=[drag_image],
)
with gr.Column(scale=1):
processed_image = gr.Image(
type='numpy',
label="Processed Image",
interactive=False,
width=256,
height=256,
image_mode='RGB',
)
processed_image_highres = gr.Image(type='pil', image_mode='RGB', visible=False)
with gr.Accordion('Advanced preprocessing options', open=True):
with gr.Row():
with gr.Column():
preprocess_chk_group = gr.CheckboxGroup(
['Preprocess with Segmentation'],
label='Segment',
info=PREPROCESS_INSTRUCTION
)
preprocess_button = gr.Button(
value="Preprocess Input Image",
)
preprocess_button.click(
fn=preprocess_image,
inputs=[input_image, preprocess_chk_group, drags],
outputs=[processed_image, drags],
queue=True,
)
with gr.Column(scale=1):
generated_gif = gr.Image(
type="filepath",
label="Generated GIF",
interactive=False,
height=256,
width=256,
image_mode="RGB",
)
with gr.Accordion('Advanced generation options', open=True):
with gr.Row():
with gr.Column():
seed = gr.Slider(label="seed", value=0, minimum=0, maximum=10000, step=1, randomize=False)
cfg_scale = gr.Slider(
label="classifier-free guidance weight",
value=5, minimum=1, maximum=10, step=0.1
)
generate_button = gr.Button(
value="Generate Image",
)
generate_button.click(
fn=generate_image,
inputs=[processed_image, seed, cfg_scale, drags],
outputs=[generated_gif],
)
demo.launch(share=True)
|