BrewLA commited on
Commit
3d750bf
·
1 Parent(s): 1b0b385

new structure

Browse files
Files changed (2) hide show
  1. main.py +18 -12
  2. requirements.txt +2 -1
main.py CHANGED
@@ -1,23 +1,23 @@
1
- from fastapi import FastAPI
2
  from fastapi.middleware.cors import CORSMiddleware
3
  from transformers import pipeline
4
- import os
5
  import random
6
 
7
  app = FastAPI()
8
 
 
9
  origins = [
10
  "https://bible-affirmations.vercel.app", # Replace with your Vercel frontend URL
11
  "http://localhost:3000", # For local testing
12
  ]
13
 
14
- # Allow all origins for CORS (adjust as per your security requirements)
15
  app.add_middleware(
16
  CORSMiddleware,
17
- allow_origins=["*"], # Allow requests from any origin
18
  allow_credentials=True,
19
- allow_methods=["POST"], # Allow only POST requests
20
- allow_headers=["*"], # Allow all headers
21
  )
22
 
23
  # Initialize the sentiment analysis pipeline
@@ -35,6 +35,15 @@ bible_verses = {
35
  ]
36
  }
37
 
 
 
 
 
 
 
 
 
 
38
  def get_feeling_classification(feeling_text):
39
  # Use the sentiment analysis pipeline to classify the feeling
40
  result = sentiment_analyzer(feeling_text)[0]
@@ -64,12 +73,9 @@ def generate_response(emotion_label):
64
  async def home():
65
  return {"message": "Hello World"}
66
 
67
- @app.post("/api/home")
68
- async def home_post(feeling: str):
69
- label, score = get_feeling_classification(feeling)
70
  bible_verse = get_bible_verse(label)
71
  response_message = generate_response(label)
72
  return {"label": label, "score": score, "verse": bible_verse, "response_message": response_message}
73
-
74
- if __name__ == "__main__":
75
- uvicorn.run(app, host="0.0.0.0", port=8080)
 
1
+ from fastapi import FastAPI, HTTPException
2
  from fastapi.middleware.cors import CORSMiddleware
3
  from transformers import pipeline
4
+ from pydantic import BaseModel
5
  import random
6
 
7
  app = FastAPI()
8
 
9
+ # Configure CORS
10
  origins = [
11
  "https://bible-affirmations.vercel.app", # Replace with your Vercel frontend URL
12
  "http://localhost:3000", # For local testing
13
  ]
14
 
 
15
  app.add_middleware(
16
  CORSMiddleware,
17
+ allow_origins=origins,
18
  allow_credentials=True,
19
+ allow_methods=["POST"],
20
+ allow_headers=["*"],
21
  )
22
 
23
  # Initialize the sentiment analysis pipeline
 
35
  ]
36
  }
37
 
38
+ class FeelingRequest(BaseModel):
39
+ feeling: str
40
+
41
+ class AffirmationResponse(BaseModel):
42
+ label: str
43
+ score: float
44
+ verse: str
45
+ response_message: str
46
+
47
  def get_feeling_classification(feeling_text):
48
  # Use the sentiment analysis pipeline to classify the feeling
49
  result = sentiment_analyzer(feeling_text)[0]
 
73
  async def home():
74
  return {"message": "Hello World"}
75
 
76
+ @app.post("/api/home", response_model=AffirmationResponse)
77
+ async def home_post(feeling_request: FeelingRequest):
78
+ label, score = get_feeling_classification(feeling_request.feeling)
79
  bible_verse = get_bible_verse(label)
80
  response_message = generate_response(label)
81
  return {"label": label, "score": score, "verse": bible_verse, "response_message": response_message}
 
 
 
requirements.txt CHANGED
@@ -3,5 +3,6 @@ fastapi[all]
3
  uvicorn
4
  transformers
5
  tf-keras
 
6
  torch
7
- tensorflow
 
3
  uvicorn
4
  transformers
5
  tf-keras
6
+ tensorflow
7
  torch
8
+ pydantic