rajistics commited on
Commit
0c04ce6
·
1 Parent(s): e14bc53

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -13
app.py CHANGED
@@ -23,31 +23,24 @@ st.sidebar.markdown(
23
 
24
  # uncomment the options below to test out the app with a variety of classification models.
25
  models = {
26
- # "textattack/distilbert-base-uncased-rotten-tomatoes": "",
27
- # "textattack/bert-base-uncased-rotten-tomatoes": "",
28
- # "textattack/roberta-base-rotten-tomatoes": "",
29
- # "mrm8488/bert-mini-finetuned-age_news-classification": "BERT-Mini finetuned on AG News dataset. Predicts news class (sports/tech/business/world) of text.",
30
- # "nateraw/bert-base-uncased-ag-news": "BERT finetuned on AG News dataset. Predicts news class (sports/tech/business/world) of text.",
31
  "distilbert-base-uncased-finetuned-sst-2-english": "DistilBERT model finetuned on SST-2 sentiment analysis task. Predicts positive/negative sentiment.",
32
- # "ProsusAI/finbert": "BERT model finetuned to predict sentiment of financial text. Finetuned on Financial PhraseBank data. Predicts positive/negative/neutral.",
33
  "sampathkethineedi/industry-classification": "DistilBERT Model to classify a business description into one of 62 industry tags.",
34
  "MoritzLaurer/policy-distilbert-7d": "DistilBERT model finetuned to classify text into one of seven political categories.",
35
  # # "MoritzLaurer/covid-policy-roberta-21": "(Under active development ) RoBERTA model finetuned to identify COVID policy measure classes ",
36
- # "mrm8488/bert-tiny-finetuned-sms-spam-detection": "Tiny bert model finetuned for spam detection. 0 == not spam, 1 == spam",
37
  }
38
  model_name = st.sidebar.selectbox(
39
  "Choose a classification model", list(models.keys())
40
  )
41
  model, tokenizer = load_model(model_name)
42
 
43
-
44
- print ("Model loaded")
45
- if model_name.startswith("textattack/"):
46
- model.config.id2label = {0: "NEGATIVE (0) ", 1: "POSITIVE (1)"}
47
  model.eval()
48
- print ("Model Evaluated")
49
  cls_explainer = SequenceClassificationExplainer(model=model, tokenizer=tokenizer)
50
- print ("Model Explained")
51
  if cls_explainer.accepts_position_ids:
52
  emb_type_name = st.sidebar.selectbox(
53
  "Choose embedding type for attribution.", ["word", "position"]
 
23
 
24
  # uncomment the options below to test out the app with a variety of classification models.
25
  models = {
26
+ "mrm8488/bert-mini-finetuned-age_news-classification": "BERT-Mini finetuned on AG News dataset. Predicts news class (sports/tech/business/world) of text.",
27
+ "nateraw/bert-base-uncased-ag-news": "BERT finetuned on AG News dataset. Predicts news class (sports/tech/business/world) of text.",
 
 
 
28
  "distilbert-base-uncased-finetuned-sst-2-english": "DistilBERT model finetuned on SST-2 sentiment analysis task. Predicts positive/negative sentiment.",
29
+ "ProsusAI/finbert": "BERT model finetuned to predict sentiment of financial text. Finetuned on Financial PhraseBank data. Predicts positive/negative/neutral.",
30
  "sampathkethineedi/industry-classification": "DistilBERT Model to classify a business description into one of 62 industry tags.",
31
  "MoritzLaurer/policy-distilbert-7d": "DistilBERT model finetuned to classify text into one of seven political categories.",
32
  # # "MoritzLaurer/covid-policy-roberta-21": "(Under active development ) RoBERTA model finetuned to identify COVID policy measure classes ",
33
+ "mrm8488/bert-tiny-finetuned-sms-spam-detection": "Tiny bert model finetuned for spam detection. 0 == not spam, 1 == spam",
34
  }
35
  model_name = st.sidebar.selectbox(
36
  "Choose a classification model", list(models.keys())
37
  )
38
  model, tokenizer = load_model(model_name)
39
 
 
 
 
 
40
  model.eval()
41
+
42
  cls_explainer = SequenceClassificationExplainer(model=model, tokenizer=tokenizer)
43
+
44
  if cls_explainer.accepts_position_ids:
45
  emb_type_name = st.sidebar.selectbox(
46
  "Choose embedding type for attribution.", ["word", "position"]