import gradio as gr from transformers import DPTFeatureExtractor, DPTForDepthEstimation import torch import numpy as np from PIL import Image import open3d as o3d torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg') feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large") model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") def process_image(image): # prepare image for the model encoding = feature_extractor(image, return_tensors="pt") # forward pass with torch.no_grad(): outputs = model(**encoding) predicted_depth = outputs.predicted_depth # interpolate to original size prediction = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1), size=image.size[::-1], mode="bicubic", align_corners=False, ).squeeze() output = prediction.cpu().numpy() depth_image = (output * 255 / np.max(output)).astype('uint8') # create_obj(formatted, "test.obj") create_obj_2(np.array(image), depth_image) # img = Image.fromarray(formatted) return "output.gltf" # return result # gradio.inputs.Image3D(self, label=None, optional=False) def create_obj_2(rgb_image, depth_image): depth_o3d = o3d.geometry.Image(depth_image) image_o3d = o3d.geometry.Image(rgb_image) rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(image_o3d, depth_o3d) w = int(depth_image.shape[0]) h = int(depth_image.shape[1]) FOV = np.pi/4 camera_intrinsic = o3d.camera.PinholeCameraIntrinsic() camera_intrinsic.set_intrinsics(w, h, w*0.5, h*0.5, w*0.5, h*0.5 ) pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image,camera_intrinsic) print('normals') pcd.normals = o3d.utility.Vector3dVector(np.zeros((1, 3))) # invalidate existing normals pcd.estimate_normals() # pcd.orient_normals_consistent_tangent_plane(100) print('run Poisson surface reconstruction') with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm: mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(pcd, depth=9) print(mesh) o3d.io.write_triangle_mesh("output.gltf",mesh,write_triangle_uvs=True) return "output.gltf" title = "Interactive demo: DPT + 3D" description = "Demo for Intel's DPT, a Dense Prediction Transformer for state-of-the-art dense prediction tasks such as semantic segmentation and depth estimation." examples =[['cats.jpg']] iface = gr.Interface(fn=process_image, inputs=gr.inputs.Image(type="pil"), outputs=gr.outputs.Image3D(label="predicted depth", clear_color=[1.0,1.0,1.0,1.0]), title=title, description=description, examples=examples, allow_flagging="never", enable_queue=True) iface.launch(debug=True)