Spaces:
Runtime error
Runtime error
File size: 4,768 Bytes
c7f097c 9ed0107 c7f097c 482feb0 dd12f3e c7f097c 9ed0107 c7f097c 5c511d7 9ed0107 c7f097c 9ed0107 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import sys
import os
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
ROOT_PATH = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
import time
import json
import numpy as np
import torch
from torch.utils.data import DataLoader
from lib.options import BaseOptions
from lib.mesh_util import *
from lib.sample_util import *
from lib.train_util import *
from lib.model import *
from PIL import Image
import torchvision.transforms as transforms
import trimesh
from datetime import datetime
# get options
opt = BaseOptions().parse()
class Evaluator:
def __init__(self, opt, projection_mode='orthogonal'):
self.opt = opt
self.load_size = self.opt.loadSize
self.to_tensor = transforms.Compose([
transforms.Resize(self.load_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# set cuda
cuda = torch.device('cuda:%d' % opt.gpu_id) if torch.cuda.is_available() else torch.device('cpu')
print("CUDDAAAAA ???", torch.cuda.get_device_name(0) if torch.cuda.is_available() else "NO ONLY CPU")
# create net
netG = HGPIFuNet(opt, projection_mode).to(device=cuda)
print('Using Network: ', netG.name)
if opt.load_netG_checkpoint_path:
netG.load_state_dict(torch.load(opt.load_netG_checkpoint_path, map_location=cuda))
if opt.load_netC_checkpoint_path is not None:
print('loading for net C ...', opt.load_netC_checkpoint_path)
netC = ResBlkPIFuNet(opt).to(device=cuda)
netC.load_state_dict(torch.load(opt.load_netC_checkpoint_path, map_location=cuda))
else:
netC = None
os.makedirs(opt.results_path, exist_ok=True)
os.makedirs('%s/%s' % (opt.results_path, opt.name), exist_ok=True)
opt_log = os.path.join(opt.results_path, opt.name, 'opt.txt')
with open(opt_log, 'w') as outfile:
outfile.write(json.dumps(vars(opt), indent=2))
self.cuda = cuda
self.netG = netG
self.netC = netC
def load_image(self, image_path, mask_path):
# Name
img_name = os.path.splitext(os.path.basename(image_path))[0]
# Calib
B_MIN = np.array([-1, -1, -1])
B_MAX = np.array([1, 1, 1])
projection_matrix = np.identity(4)
projection_matrix[1, 1] = -1
calib = torch.Tensor(projection_matrix).float()
# Mask
mask = Image.open(mask_path).convert('L')
mask = transforms.Resize(self.load_size)(mask)
mask = transforms.ToTensor()(mask).float()
# image
image = Image.open(image_path).convert('RGB')
image = self.to_tensor(image)
image = mask.expand_as(image) * image
return {
'name': img_name,
'img': image.unsqueeze(0),
'calib': calib.unsqueeze(0),
'mask': mask.unsqueeze(0),
'b_min': B_MIN,
'b_max': B_MAX,
}
def eval(self, data, use_octree=False):
'''
Evaluate a data point
:param data: a dict containing at least ['name'], ['image'], ['calib'], ['b_min'] and ['b_max'] tensors.
:return:
'''
opt = self.opt
with torch.no_grad():
self.netG.eval()
if self.netC:
self.netC.eval()
save_path = '%s/%s/result_%s.obj' % (opt.results_path, opt.name, data['name'])
if self.netC:
gen_mesh_color(opt, self.netG, self.netC, self.cuda, data, save_path, use_octree=use_octree)
else:
gen_mesh(opt, self.netG, self.cuda, data, save_path, use_octree=use_octree)
if __name__ == '__main__':
evaluator = Evaluator(opt)
results_path = opt.results_path
name = opt.name
test_image_path = opt.img_path
test_mask_path = test_image_path[:-4] +'_mask.png'
test_img_name = os.path.splitext(os.path.basename(test_image_path))[0]
print("test_image: ", test_image_path)
print("test_mask: ", test_mask_path)
try:
time = datetime.now()
print("evaluating" , time)
data = evaluator.load_image(test_image_path, test_mask_path)
evaluator.eval(data, False)
print("done evaluating" , datetime.now() - time)
except Exception as e:
print("error:", e.args)
try:
mesh = trimesh.load(f'{results_path}/{name}/result_{test_img_name}.obj')
mesh.apply_transform([[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, 1]])
mesh.export(file_obj=f'{results_path}/{name}/result_{test_img_name}.glb')
except Exception as e:
print("error generating MESH", e)
|