Spaces:
Runtime error
Runtime error
File size: 11,500 Bytes
004fea0 5e803c8 004fea0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
# Import baseline dependencies
import time
from datetime import date
import pandas as pd
import pandas_datareader as data
import requests
import streamlit as st
from bs4 import BeautifulSoup
from plotly import graph_objs as go
from prophet import Prophet
from prophet.plot import plot_plotly
# summarisation (Pegasus) and sentiment analysis (BERT) models
from transformers import (BertForSequenceClassification, BertTokenizer,
PegasusTokenizer, TFPegasusForConditionalGeneration,
pipeline)
# Setting streamlit page config to wide
st.set_page_config(layout='wide')
@st.cache(allow_output_mutation=True, show_spinner=False)
# Setup summarisation model
def get_summarisation_model():
sum_model_name = "human-centered-summarization/financial-summarization-pegasus"
sum_tokenizer = PegasusTokenizer.from_pretrained(sum_model_name)
sum_model = TFPegasusForConditionalGeneration.from_pretrained(
sum_model_name)
# returning model and tokenizer
return sum_model, sum_tokenizer
@st.cache(allow_output_mutation=True, show_spinner=False)
# Setup sentiment analysis model
def get_sentiment_pepeline():
sen_model_name = "ahmedrachid/FinancialBERT-Sentiment-Analysis"
sen_tokenizer = BertTokenizer.from_pretrained(sen_model_name)
sen_model = BertForSequenceClassification.from_pretrained(
sen_model_name, num_labels=3)
sentiment_nlp = pipeline("sentiment-analysis",
model=sen_model, tokenizer=sen_tokenizer)
# returning sentiment pipeline
return sentiment_nlp
@st.cache(show_spinner=False, suppress_st_warning=True)
# Get all links from Google News
def search_urls(ticker, num, date):
# https://developers.google.com/custom-search/docs/xml_results_appendices#interfaceLanguages
# Request headers and parameters
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/106.0.0.0 Safari/537.36",
}
params = {
"as_sitesearch": "finance.yahoo.com", # we only want results from Yahoo Finance
"hl": "en", # language of the interface
"gl": "us", # country of the search
"tbm": "nws", # news results
"lr": "lang_en" # language filter
}
# base URL
url = "https://www.google.com/search"
# search query
params["as_epq"] = ticker
params["as_occt"] = ticker
# number of search results per page
params["num"] = num
# articles timeframe
# d = past 24h, h = past hour, w = past week, m = pasth month
if date == "Past week":
params["as_qdr"] = "w"
elif date == "Past day":
params["as_qdr"] = "d"
r = requests.get(url, headers=headers, params=params,
cookies={'CONSENT': 'YES+'})
time.sleep(5)
st.write("Searched URL:")
st.write(r.url) # debugging
soup = BeautifulSoup(r.text, "html.parser")
atags = soup.find_all("a", "WlydOe")
hrefs = [link["href"] for link in atags]
return hrefs
@st.cache(show_spinner=False)
# Extract title, date, and content of the article from all given URLs
def search_scrape(urls):
articles = []
titles = []
post_dates = []
for url in urls:
r = requests.get(url)
time.sleep(5)
soup = BeautifulSoup(r.text, "html.parser")
# title
title = soup.find("header", "caas-title-wrapper")
# handling missing titles
if title is not None:
titles.append(title.text)
else:
titles.append("N/A")
# posting date of the article
date = soup.find("time", "caas-attr-meta-time")
# handling missing dates
if date is not None:
post_dates.append(date.text)
else:
post_dates.append("N/A")
# article content
# all the paragraphs within the article
paragraphs = soup.find_all("div", "caas-body")
text = [paragraph.text for paragraph in paragraphs]
# extract only the first 300 words (needs to be done to avoid limit
# problems with the summarisation model)
words = " ".join(text).split(" ")[:350]
article = " ".join(words)
articles.append(article)
return titles, post_dates, articles
@st.cache(show_spinner=False)
# Summarise all given articles using a fine-tuned Pegasus Transformers model
def summarise_articles(sum_model, sum_tokenizer, articles):
summaries = []
for article in articles:
# source
# https://huggingface.co/human-centered-summarization/financial-summarization-pegasus
input_ids = sum_tokenizer(
article, return_tensors="tf").input_ids
output = sum_model.generate(
input_ids, max_length=55, num_beans=5, early_stopping=True)
summary = sum_tokenizer.decode(
output[0], skip_special_tokens=True)
summaries.append(summary)
return summaries
@st.cache(show_spinner=False)
# Join all data into rows
def create_output_array(titles, post_dates, summarised_articles, sentiment_scores, raw_urls):
output_array = []
for idx in range(len(summarised_articles)):
row = [
titles[idx],
post_dates[idx],
summarised_articles[idx],
sentiment_scores[idx]["label"].capitalize(),
"{:.0%}".format(sentiment_scores[idx]["score"]),
raw_urls[idx]
]
output_array.append(row)
return output_array
@st.cache(show_spinner=False)
# Convert dataframe to .csv file
def convert_df(df):
return df.to_csv().encode("utf-8")
# ------------------------------------------------------------------------------
@st.cache(show_spinner=False)
# Load data from Yahoo Finance
def load_data(ticker, start, end):
df = data.DataReader(ticker, "yahoo", start, end)
df.reset_index(inplace=True)
return df
@st.cache(show_spinner=False)
# Predict stock trend for N years using Prophet
def predict(df, period):
df_train = df[["Date", "Close"]]
df_train = df_train.rename(columns={"Date": "ds", "Close": "y"})
model = Prophet()
model.fit(df_train)
future = model.make_future_dataframe(periods=period)
forecast = model.predict(future)
return model, forecast
def main_page():
# Financial News Analysis feature
# Streamlit text
st.sidebar.markdown("## Financial News Analysis")
st.sidebar.write(
"Scrape, auto summarise and calculate sentiment for stock and crypto news.")
# User input
ticker = st.text_input("Ticker:", "TSLA")
num = st.number_input("Number of articles:", 5, 15, 10)
date = st.selectbox(
"Timeline:", ["Past week", "Past day"])
search = st.button("Search")
st.info("Please do not spam the search button")
st.markdown("---")
# If button is pressed
if search:
with st.spinner("Processing articles, please wait..."):
# Search query and return all articles' links
raw_urls = search_urls(ticker, num, date)
# If any problems happened (e.g., blocked by Google's server) stop app
if not raw_urls:
st.error("Please wait a few minutes before trying again")
else:
# Scrap title, posting date and article content from all the URLs
titles, post_dates, articles = search_scrape(raw_urls)
# Summarise all articles
summarised_articles = summarise_articles(
sum_model, sum_tokenizer, articles)
# Calculate sentiment for all articles
# source
# https://huggingface.co/ahmedrachid/FinancialBERT-Sentiment-Analysis
sentiment_scores = sentiment_pipeline(summarised_articles)
# Create dataframe
output_array = create_output_array(
titles, post_dates, summarised_articles, sentiment_scores, raw_urls)
cols = ["Title", "Date", "Summary",
"Label", "Confidence", "URL"]
df = pd.DataFrame(output_array, columns=cols)
# Visualise dataframe
st.dataframe(df)
# Convert dataframe to csv and let user download it
csv_file = convert_df(df)
# Download CSV
st.download_button(
"Save data to CSV", csv_file, "assetsummaries.csv", "text/csv", key="download-csv")
def page2():
# Stock Trend Forecasting feature
# Streamlit text
st.sidebar.markdown("## Stock Trend Forecasting")
st.sidebar.write(
"A simple dashboard for stock trend forecasting and analysis.")
# Start and end date of data
start = "2010-01-01"
end = date.today().strftime("%Y-%m-%d")
# Ticker selection
ticker = st.text_input("Ticker:", "AAPL")
# Loading data from Yahoo Finance
df = load_data(ticker, start, end)
# Period selection
n_years = st.number_input("Years of prediction:", 1, 4, 1)
period = n_years * 365
# Start prediction button
init = st.button("Predict")
st.markdown("---")
# Visualisation
# Dropping adj close column
df = df.drop(["Adj Close"], axis=1)
# Visualisation
# Exploratory analysis
st.subheader("Exploratory analysis")
st.write(df.describe())
# Plot raw closing data with 100 and 200 days MA (for simple analysis)
st.subheader("Closing data, MA100 and MA200")
ma100 = df.Close.rolling(100).mean()
ma200 = df.Close.rolling(200).mean()
fig = go.Figure()
fig.update_layout(
margin=dict(
l=0,
r=0,
b=0,
t=50,
pad=4
)
)
fig.add_trace(go.Scatter(x=df["Date"],
y=df['Close'], name="stock_close"))
fig.add_trace(go.Scatter(x=df["Date"], y=ma100, name="ma100"))
fig.add_trace(go.Scatter(x=df["Date"], y=ma200, name="ma200"))
fig.layout.update(xaxis_rangeslider_visible=True)
st.plotly_chart(fig, use_container_width=True)
# If button is pressed, start forecasting
if init:
with st.spinner("Please wait..."):
model, forecast = predict(df, period)
st.markdown("---")
st.subheader("Forecast data")
st.write(forecast.tail())
st.subheader(f"Forecast plot for {n_years} years")
fig = plot_plotly(model, forecast)
fig.update_layout(
margin=dict(
l=0,
r=0,
b=0,
t=0,
pad=4
)
)
st.plotly_chart(fig, use_container_width=True)
st.subheader("Forecast components")
fig = model.plot_components(forecast)
st.write(fig)
if __name__ == "__main__":
with st.spinner("Loading all models..."):
# Creating summariser and sentiment models
sum_model, sum_tokenizer = get_summarisation_model()
sentiment_pipeline = get_sentiment_pepeline()
page_names_to_funcs = {
"Financial News Analysis": main_page,
"Stock Trend Forecasting": page2
}
st.sidebar.markdown("# Financial Researcher")
selected_page = st.sidebar.selectbox(
"Select a page", page_names_to_funcs.keys())
st.sidebar.markdown("---")
page_names_to_funcs[selected_page]()
|