add app.py
Browse files
app.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoConfig, AutoTokenizer
|
3 |
+
from bert_graph import BertForMultipleChoice
|
4 |
+
import ipdb
|
5 |
+
import torch
|
6 |
+
import copy
|
7 |
+
from itertools import chain
|
8 |
+
|
9 |
+
# "Comparison of mean diurnal measurements with latanoprost and timolol showed a statistical significant (P < 0.001) difference at 3, 6, and 12 months.",
|
10 |
+
# "in patients with pigmentary glaucoma, 0.005% latanoprost taken once daily was well tolerated and more effective in reducing IOP than 0.5% timolol taken twice daily."
|
11 |
+
|
12 |
+
def preprocess_function_exp(examples, tokenizer):
|
13 |
+
|
14 |
+
# Flatten out
|
15 |
+
pair_list = examples
|
16 |
+
# ipdb.set_trace()
|
17 |
+
pair_len = [len(item) for item in pair_list]
|
18 |
+
|
19 |
+
first_sentences = []
|
20 |
+
second_sentences = []
|
21 |
+
for line_list in pair_list:
|
22 |
+
for line in line_list:
|
23 |
+
# ipdb.set_trace()
|
24 |
+
sent_item = line.strip().split('\t')
|
25 |
+
first_sentences.append(sent_item[0].strip())
|
26 |
+
second_sentences.append(sent_item[1].strip())
|
27 |
+
|
28 |
+
# Tokenize
|
29 |
+
tokenized_examples = tokenizer(
|
30 |
+
first_sentences,
|
31 |
+
second_sentences,
|
32 |
+
max_length=512,
|
33 |
+
padding=False,
|
34 |
+
truncation=True,
|
35 |
+
)
|
36 |
+
# Un-flatten
|
37 |
+
# tokenized_inputs = {k: [v[i : i + pair_len[0]] for i in range(0, len(v), pair_len[0])] for k, v in tokenized_examples.items()}
|
38 |
+
tokenized_inputs = {}
|
39 |
+
for k, v in tokenized_examples.items():
|
40 |
+
flatten_list = []
|
41 |
+
head_idx = 0
|
42 |
+
tail_idx = 0
|
43 |
+
for pair_idx in pair_len:
|
44 |
+
tail_idx = head_idx + pair_idx
|
45 |
+
flatten_list.append(v[head_idx: tail_idx])
|
46 |
+
head_idx = copy.copy(tail_idx)
|
47 |
+
tokenized_inputs[k] = flatten_list
|
48 |
+
|
49 |
+
# tokenized_inputs["pair_len"] = pair_len
|
50 |
+
return tokenized_inputs
|
51 |
+
|
52 |
+
def DCForMultipleChoice(features, tokenizer):
|
53 |
+
|
54 |
+
batch_size = len(features)
|
55 |
+
argument_len = 4
|
56 |
+
|
57 |
+
flattened_features = [
|
58 |
+
[{k: v[0][i] for k, v in features.items()} for i in range(4)]
|
59 |
+
]
|
60 |
+
|
61 |
+
flattened_features = list(chain(*flattened_features))
|
62 |
+
|
63 |
+
|
64 |
+
batch = tokenizer.pad(
|
65 |
+
flattened_features,
|
66 |
+
padding=True,
|
67 |
+
max_length=512,
|
68 |
+
return_tensors="pt",
|
69 |
+
)
|
70 |
+
|
71 |
+
|
72 |
+
batch = {k: v.view(1, argument_len, -1) for k, v in batch.items()}
|
73 |
+
|
74 |
+
return batch
|
75 |
+
|
76 |
+
def post_process_diag(predictions):
|
77 |
+
|
78 |
+
num_sentences = int(len(predictions)**0.5)
|
79 |
+
predictions_mtx = predictions.reshape(num_sentences, num_sentences)
|
80 |
+
|
81 |
+
for i in range(num_sentences):
|
82 |
+
for j in range(num_sentences):
|
83 |
+
if i == j:
|
84 |
+
predictions_mtx[i, j] = 0
|
85 |
+
|
86 |
+
return predictions_mtx.view(-1)
|
87 |
+
|
88 |
+
def max_vote(logits1, logits2, pred1, pred2):
|
89 |
+
|
90 |
+
pred1 = post_process_diag(pred1)
|
91 |
+
pred2 = post_process_diag(pred2)
|
92 |
+
pred_res = []
|
93 |
+
confidence_res = []
|
94 |
+
for i in range(len(logits1)):
|
95 |
+
|
96 |
+
soft_logits1 = torch.nn.functional.softmax(logits1[i]) # [[j] for j in range(logits1.shape[1])]
|
97 |
+
soft_logits2 = torch.nn.functional.softmax(logits2[i])
|
98 |
+
|
99 |
+
# two class
|
100 |
+
# torch.topk(soft_logits1, n=2)
|
101 |
+
values_1, _ = soft_logits1.topk(k=2)
|
102 |
+
values_2, _ = soft_logits2.topk(k=2)
|
103 |
+
# import ipdb
|
104 |
+
# ipdb.set_trace()
|
105 |
+
# if (values_1[0] - values_2[0]) > (values_1[1] - values_2[1]):
|
106 |
+
# pred_res.append(int(pred1[i].detach().cpu().numpy()))
|
107 |
+
# else:
|
108 |
+
# pred_res.append(int(pred2[i].detach().cpu().numpy()))
|
109 |
+
if (values_1[0] - values_1[1]) >= (values_2[0] - values_2[1]):
|
110 |
+
pred_res.append(int(pred1[i].detach().cpu().numpy()))
|
111 |
+
confidence_res.append(float((values_1[0] - values_1[1]).detach().cpu().numpy()))
|
112 |
+
else:
|
113 |
+
pred_res.append(int(pred2[i].detach().cpu().numpy()))
|
114 |
+
confidence_res.append(float((values_2[0] - values_2[1]).detach().cpu().numpy()))
|
115 |
+
|
116 |
+
return pred_res, confidence_res
|
117 |
+
|
118 |
+
def model_infer(input_a, input_b):
|
119 |
+
|
120 |
+
config = AutoConfig.from_pretrained('michiyasunaga/BioLinkBERT-base')
|
121 |
+
config.win_size = 13
|
122 |
+
config.model_mode = 'bert_mtl_1d'
|
123 |
+
config.dataset_domain = 'absRCT'
|
124 |
+
config.voter_branch = 'dual'
|
125 |
+
config.destroy = False
|
126 |
+
|
127 |
+
model = BertForMultipleChoice.from_pretrained(
|
128 |
+
'michiyasunaga/BioLinkBERT-base',
|
129 |
+
config=config,
|
130 |
+
)
|
131 |
+
p_sum = torch.load('D:/Code/Antidote/ari_model/best.pth', map_location=torch.device('cpu'))
|
132 |
+
model.load_state_dict(p_sum)
|
133 |
+
tokenizer = AutoTokenizer.from_pretrained('michiyasunaga/BioLinkBERT-base')
|
134 |
+
|
135 |
+
|
136 |
+
examples = [[input_a+'\t'+input_a, input_a+'\t'+input_b, input_b+'\t'+input_a, input_b+'\t'+input_b]]
|
137 |
+
tokenized_inputs = preprocess_function_exp(examples, tokenizer)
|
138 |
+
tokenized_inputs = DCForMultipleChoice(tokenized_inputs, tokenizer)
|
139 |
+
# ipdb.set_trace()
|
140 |
+
outputs = model(**tokenized_inputs)
|
141 |
+
predictions, scores = max_vote(outputs.logits[0], outputs.logits[1], outputs.logits[0].argmax(dim=-1), outputs.logits[1].argmax(dim=-1))
|
142 |
+
|
143 |
+
prediction_a_b = predictions[1]
|
144 |
+
prediction_b_a = predictions[2]
|
145 |
+
|
146 |
+
label_space = {0: 'not relates', 1: 'supports', 2: 'attack'}
|
147 |
+
label_a_b = label_space[prediction_a_b]
|
148 |
+
label_b_a = label_space[prediction_b_a]
|
149 |
+
|
150 |
+
return 'Head Argument {} Tail Argument'.format(label_a_b, label_b_a)
|
151 |
+
# ipdb.set_trace()
|
152 |
+
|
153 |
+
|
154 |
+
with gr.Blocks() as demo:
|
155 |
+
#设置输入组件
|
156 |
+
arg_1 = gr.Textbox(label="Head Argument")
|
157 |
+
arg_2 = gr.Textbox(label="Tail Argument")
|
158 |
+
|
159 |
+
gr.Examples([\
|
160 |
+
"Compared with baseline measurements, both latanoprost and timolol caused a significant (P < 0.001) reduction of IOP at each hour of diurnal curve throughout the duration of therapy.",\
|
161 |
+
"Reduction of IOP was 6.0 +/- 4.5 and 5.9 +/- 4.6 with latanoprost and 4.8 +/- 3.0 and 4.6 +/- 3.1 with timolol after 6 and 12 months, respectively.",\
|
162 |
+
"Comparison of mean diurnal measurements with latanoprost and timolol showed a statistical significant (P < 0.001) difference at 3, 6, and 12 months.",\
|
163 |
+
"Mean C was found to be significantly enhanced (+30%) only in the latanoprost-treated group compared with the baseline (P = 0.017).",\
|
164 |
+
"Mean conjunctival hyperemia was graded at 0.3 in latanoprost-treated eyes and 0.2 in timolol-treated eyes.",\
|
165 |
+
"A remarkable change in iris color was observed in both eyes of 1 of the 18 patients treated with latanoprost and none of the 18 patients who received timolol.",\
|
166 |
+
"In the timolol group, heart rate was significantly reduced from 72 +/- 9 at baseline to 67 +/- 10 beats per minute at 12 months.",\
|
167 |
+
"in patients with pigmentary glaucoma, 0.005% latanoprost taken once daily was well tolerated and more effective in reducing IOP than 0.5% timolol taken twice daily.",\
|
168 |
+
"further studies may need to confirm these data on a larger sample and to evaluate the side effect of increased iris pigmentation on long-term follow-up,",\
|
169 |
+
], arg_1)
|
170 |
+
gr.Examples([\
|
171 |
+
"Compared with baseline measurements, both latanoprost and timolol caused a significant (P < 0.001) reduction of IOP at each hour of diurnal curve throughout the duration of therapy.",\
|
172 |
+
"Reduction of IOP was 6.0 +/- 4.5 and 5.9 +/- 4.6 with latanoprost and 4.8 +/- 3.0 and 4.6 +/- 3.1 with timolol after 6 and 12 months, respectively.",\
|
173 |
+
"Comparison of mean diurnal measurements with latanoprost and timolol showed a statistical significant (P < 0.001) difference at 3, 6, and 12 months.",\
|
174 |
+
"Mean C was found to be significantly enhanced (+30%) only in the latanoprost-treated group compared with the baseline (P = 0.017).",\
|
175 |
+
"Mean conjunctival hyperemia was graded at 0.3 in latanoprost-treated eyes and 0.2 in timolol-treated eyes.",\
|
176 |
+
"A remarkable change in iris color was observed in both eyes of 1 of the 18 patients treated with latanoprost and none of the 18 patients who received timolol.",\
|
177 |
+
"In the timolol group, heart rate was significantly reduced from 72 +/- 9 at baseline to 67 +/- 10 beats per minute at 12 months.",\
|
178 |
+
"in patients with pigmentary glaucoma, 0.005% latanoprost taken once daily was well tolerated and more effective in reducing IOP than 0.5% timolol taken twice daily.",\
|
179 |
+
"further studies may need to confirm these data on a larger sample and to evaluate the side effect of increased iris pigmentation on long-term follow-up,",\
|
180 |
+
], arg_2)
|
181 |
+
# 设置输出组件
|
182 |
+
output = gr.Textbox(label="Output Box")
|
183 |
+
#设置按钮
|
184 |
+
greet_btn = gr.Button("Run")
|
185 |
+
#设置按钮点击事件
|
186 |
+
greet_btn.click(fn=model_infer, inputs=[arg_1, arg_2], outputs=output)
|
187 |
+
|
188 |
+
|
189 |
+
|
190 |
+
demo.launch()
|