qweiq commited on
Commit
16ee7cd
·
1 Parent(s): b422df7

add app.py

Browse files
Files changed (1) hide show
  1. app.py +190 -0
app.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoConfig, AutoTokenizer
3
+ from bert_graph import BertForMultipleChoice
4
+ import ipdb
5
+ import torch
6
+ import copy
7
+ from itertools import chain
8
+
9
+ # "Comparison of mean diurnal measurements with latanoprost and timolol showed a statistical significant (P < 0.001) difference at 3, 6, and 12 months.",
10
+ # "in patients with pigmentary glaucoma, 0.005% latanoprost taken once daily was well tolerated and more effective in reducing IOP than 0.5% timolol taken twice daily."
11
+
12
+ def preprocess_function_exp(examples, tokenizer):
13
+
14
+ # Flatten out
15
+ pair_list = examples
16
+ # ipdb.set_trace()
17
+ pair_len = [len(item) for item in pair_list]
18
+
19
+ first_sentences = []
20
+ second_sentences = []
21
+ for line_list in pair_list:
22
+ for line in line_list:
23
+ # ipdb.set_trace()
24
+ sent_item = line.strip().split('\t')
25
+ first_sentences.append(sent_item[0].strip())
26
+ second_sentences.append(sent_item[1].strip())
27
+
28
+ # Tokenize
29
+ tokenized_examples = tokenizer(
30
+ first_sentences,
31
+ second_sentences,
32
+ max_length=512,
33
+ padding=False,
34
+ truncation=True,
35
+ )
36
+ # Un-flatten
37
+ # tokenized_inputs = {k: [v[i : i + pair_len[0]] for i in range(0, len(v), pair_len[0])] for k, v in tokenized_examples.items()}
38
+ tokenized_inputs = {}
39
+ for k, v in tokenized_examples.items():
40
+ flatten_list = []
41
+ head_idx = 0
42
+ tail_idx = 0
43
+ for pair_idx in pair_len:
44
+ tail_idx = head_idx + pair_idx
45
+ flatten_list.append(v[head_idx: tail_idx])
46
+ head_idx = copy.copy(tail_idx)
47
+ tokenized_inputs[k] = flatten_list
48
+
49
+ # tokenized_inputs["pair_len"] = pair_len
50
+ return tokenized_inputs
51
+
52
+ def DCForMultipleChoice(features, tokenizer):
53
+
54
+ batch_size = len(features)
55
+ argument_len = 4
56
+
57
+ flattened_features = [
58
+ [{k: v[0][i] for k, v in features.items()} for i in range(4)]
59
+ ]
60
+
61
+ flattened_features = list(chain(*flattened_features))
62
+
63
+
64
+ batch = tokenizer.pad(
65
+ flattened_features,
66
+ padding=True,
67
+ max_length=512,
68
+ return_tensors="pt",
69
+ )
70
+
71
+
72
+ batch = {k: v.view(1, argument_len, -1) for k, v in batch.items()}
73
+
74
+ return batch
75
+
76
+ def post_process_diag(predictions):
77
+
78
+ num_sentences = int(len(predictions)**0.5)
79
+ predictions_mtx = predictions.reshape(num_sentences, num_sentences)
80
+
81
+ for i in range(num_sentences):
82
+ for j in range(num_sentences):
83
+ if i == j:
84
+ predictions_mtx[i, j] = 0
85
+
86
+ return predictions_mtx.view(-1)
87
+
88
+ def max_vote(logits1, logits2, pred1, pred2):
89
+
90
+ pred1 = post_process_diag(pred1)
91
+ pred2 = post_process_diag(pred2)
92
+ pred_res = []
93
+ confidence_res = []
94
+ for i in range(len(logits1)):
95
+
96
+ soft_logits1 = torch.nn.functional.softmax(logits1[i]) # [[j] for j in range(logits1.shape[1])]
97
+ soft_logits2 = torch.nn.functional.softmax(logits2[i])
98
+
99
+ # two class
100
+ # torch.topk(soft_logits1, n=2)
101
+ values_1, _ = soft_logits1.topk(k=2)
102
+ values_2, _ = soft_logits2.topk(k=2)
103
+ # import ipdb
104
+ # ipdb.set_trace()
105
+ # if (values_1[0] - values_2[0]) > (values_1[1] - values_2[1]):
106
+ # pred_res.append(int(pred1[i].detach().cpu().numpy()))
107
+ # else:
108
+ # pred_res.append(int(pred2[i].detach().cpu().numpy()))
109
+ if (values_1[0] - values_1[1]) >= (values_2[0] - values_2[1]):
110
+ pred_res.append(int(pred1[i].detach().cpu().numpy()))
111
+ confidence_res.append(float((values_1[0] - values_1[1]).detach().cpu().numpy()))
112
+ else:
113
+ pred_res.append(int(pred2[i].detach().cpu().numpy()))
114
+ confidence_res.append(float((values_2[0] - values_2[1]).detach().cpu().numpy()))
115
+
116
+ return pred_res, confidence_res
117
+
118
+ def model_infer(input_a, input_b):
119
+
120
+ config = AutoConfig.from_pretrained('michiyasunaga/BioLinkBERT-base')
121
+ config.win_size = 13
122
+ config.model_mode = 'bert_mtl_1d'
123
+ config.dataset_domain = 'absRCT'
124
+ config.voter_branch = 'dual'
125
+ config.destroy = False
126
+
127
+ model = BertForMultipleChoice.from_pretrained(
128
+ 'michiyasunaga/BioLinkBERT-base',
129
+ config=config,
130
+ )
131
+ p_sum = torch.load('D:/Code/Antidote/ari_model/best.pth', map_location=torch.device('cpu'))
132
+ model.load_state_dict(p_sum)
133
+ tokenizer = AutoTokenizer.from_pretrained('michiyasunaga/BioLinkBERT-base')
134
+
135
+
136
+ examples = [[input_a+'\t'+input_a, input_a+'\t'+input_b, input_b+'\t'+input_a, input_b+'\t'+input_b]]
137
+ tokenized_inputs = preprocess_function_exp(examples, tokenizer)
138
+ tokenized_inputs = DCForMultipleChoice(tokenized_inputs, tokenizer)
139
+ # ipdb.set_trace()
140
+ outputs = model(**tokenized_inputs)
141
+ predictions, scores = max_vote(outputs.logits[0], outputs.logits[1], outputs.logits[0].argmax(dim=-1), outputs.logits[1].argmax(dim=-1))
142
+
143
+ prediction_a_b = predictions[1]
144
+ prediction_b_a = predictions[2]
145
+
146
+ label_space = {0: 'not relates', 1: 'supports', 2: 'attack'}
147
+ label_a_b = label_space[prediction_a_b]
148
+ label_b_a = label_space[prediction_b_a]
149
+
150
+ return 'Head Argument {} Tail Argument'.format(label_a_b, label_b_a)
151
+ # ipdb.set_trace()
152
+
153
+
154
+ with gr.Blocks() as demo:
155
+ #设置输入组件
156
+ arg_1 = gr.Textbox(label="Head Argument")
157
+ arg_2 = gr.Textbox(label="Tail Argument")
158
+
159
+ gr.Examples([\
160
+ "Compared with baseline measurements, both latanoprost and timolol caused a significant (P < 0.001) reduction of IOP at each hour of diurnal curve throughout the duration of therapy.",\
161
+ "Reduction of IOP was 6.0 +/- 4.5 and 5.9 +/- 4.6 with latanoprost and 4.8 +/- 3.0 and 4.6 +/- 3.1 with timolol after 6 and 12 months, respectively.",\
162
+ "Comparison of mean diurnal measurements with latanoprost and timolol showed a statistical significant (P < 0.001) difference at 3, 6, and 12 months.",\
163
+ "Mean C was found to be significantly enhanced (+30%) only in the latanoprost-treated group compared with the baseline (P = 0.017).",\
164
+ "Mean conjunctival hyperemia was graded at 0.3 in latanoprost-treated eyes and 0.2 in timolol-treated eyes.",\
165
+ "A remarkable change in iris color was observed in both eyes of 1 of the 18 patients treated with latanoprost and none of the 18 patients who received timolol.",\
166
+ "In the timolol group, heart rate was significantly reduced from 72 +/- 9 at baseline to 67 +/- 10 beats per minute at 12 months.",\
167
+ "in patients with pigmentary glaucoma, 0.005% latanoprost taken once daily was well tolerated and more effective in reducing IOP than 0.5% timolol taken twice daily.",\
168
+ "further studies may need to confirm these data on a larger sample and to evaluate the side effect of increased iris pigmentation on long-term follow-up,",\
169
+ ], arg_1)
170
+ gr.Examples([\
171
+ "Compared with baseline measurements, both latanoprost and timolol caused a significant (P < 0.001) reduction of IOP at each hour of diurnal curve throughout the duration of therapy.",\
172
+ "Reduction of IOP was 6.0 +/- 4.5 and 5.9 +/- 4.6 with latanoprost and 4.8 +/- 3.0 and 4.6 +/- 3.1 with timolol after 6 and 12 months, respectively.",\
173
+ "Comparison of mean diurnal measurements with latanoprost and timolol showed a statistical significant (P < 0.001) difference at 3, 6, and 12 months.",\
174
+ "Mean C was found to be significantly enhanced (+30%) only in the latanoprost-treated group compared with the baseline (P = 0.017).",\
175
+ "Mean conjunctival hyperemia was graded at 0.3 in latanoprost-treated eyes and 0.2 in timolol-treated eyes.",\
176
+ "A remarkable change in iris color was observed in both eyes of 1 of the 18 patients treated with latanoprost and none of the 18 patients who received timolol.",\
177
+ "In the timolol group, heart rate was significantly reduced from 72 +/- 9 at baseline to 67 +/- 10 beats per minute at 12 months.",\
178
+ "in patients with pigmentary glaucoma, 0.005% latanoprost taken once daily was well tolerated and more effective in reducing IOP than 0.5% timolol taken twice daily.",\
179
+ "further studies may need to confirm these data on a larger sample and to evaluate the side effect of increased iris pigmentation on long-term follow-up,",\
180
+ ], arg_2)
181
+ # 设置输出组件
182
+ output = gr.Textbox(label="Output Box")
183
+ #设置按钮
184
+ greet_btn = gr.Button("Run")
185
+ #设置按钮点击事件
186
+ greet_btn.click(fn=model_infer, inputs=[arg_1, arg_2], outputs=output)
187
+
188
+
189
+
190
+ demo.launch()